【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

【答案】( ,2)
【解析】解:關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞), ∴a<0,且﹣ ,﹣2為方程ax2+bx+c=0的兩根,
∴﹣ +(﹣2)=﹣ ,且﹣ ×(﹣2)= ;
∴b= a,c=a,
∴不等式ax2﹣bx+c>0可化為ax2 ax+a>0,
∴2x2﹣5x+2<0,
即(2x﹣1)(x﹣2)<0,
解得 <x<2,
∴不等式ax2﹣bx+c>0的解集為( ,2).
所以答案是:( ,2).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元二次不等式(求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺(tái)母線的長;
(2)求該圓臺(tái)的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,坐標(biāo)平面上一點(diǎn)P滿足: 的周長為6,記點(diǎn)P的軌跡為.拋物線為焦點(diǎn),頂點(diǎn)為坐標(biāo)原點(diǎn)O.

(Ⅰ)求, 的方程;

(Ⅱ)若過的直線與拋物線交于兩點(diǎn),問在上且在直線外是否存在一點(diǎn),使直線的斜率依次成等差數(shù)列,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)f(x)的解析式為
(1)求當(dāng)x<0時(shí)函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A′B′C′,側(cè)棱與底面垂直,且所有的棱長均為2,E為AA′的中點(diǎn),F(xiàn)為AB的中點(diǎn). (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品.這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):

產(chǎn)品

產(chǎn)品(其中

(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進(jìn)行投資,如果一年后他們中至少有一人獲利的概率大于,求的取值范圍;

(Ⅱ)丙要將家中閑置的10萬元錢進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)在橢圓上, ,過點(diǎn)的直線與橢圓分別交于兩點(diǎn).

(1)求橢圓的方程及離心率;

(2)若的面積為為坐標(biāo)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S. ①當(dāng) 時(shí),S為四邊形
②截面在底面上投影面積恒為定值
③不存在某個(gè)位置,使得截面S與平面A1BD垂直
④當(dāng) 時(shí),S與C1D1的交點(diǎn)滿足C1R1=
其中正確命題的個(gè)數(shù)為

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案