【題目】已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(1)求該圓臺(tái)母線的長(zhǎng);
(2)求該圓臺(tái)的體積.

【答案】解:(1)設(shè)圓臺(tái)的母線為l,則由題意得π(2+6)l=π22+π62 ,
∴8πl(wèi)=40π,l=5.
∴該圓臺(tái)的母線長(zhǎng)為5;
(2)設(shè)圓臺(tái)的高為h,由勾股定理可得h==3,
∴圓臺(tái)的體積 V=π×(22+62+2×6)×3=52π.
【解析】(1)求出圓臺(tái)的上底面面積,下底面面積,再寫出側(cè)面積表達(dá)式,利用側(cè)面面積等于兩底面面積之和,即求出圓臺(tái)的母線長(zhǎng);
(2)利用勾股定理求得圓臺(tái)的高h(yuǎn),根據(jù)圓臺(tái)的體積公式求出它的體積即可.
【考點(diǎn)精析】本題主要考查了旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))的相關(guān)知識(shí)點(diǎn),需要掌握常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺(tái)、球才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù));在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.

(Ⅰ)求證: ;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為 為直線, 的交點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn),求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有 .(填上所有正確命題的序號(hào))
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④異面直線PM與BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為,求直線被圓截得弦長(zhǎng)的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中, ,分別過點(diǎn)作直線, 垂直平面,且, .

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿足的等差中項(xiàng)為).

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在正整數(shù),是不等式)恒成立,若存在,求出的最大值;若不存在,請(qǐng)說明理由.

(3)設(shè) ,若集合恰有個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

查看答案和解析>>

同步練習(xí)冊(cè)答案