【題目】已知p>0,q>0,隨機變量ξ的分布列如下:
ξ | p | q |
P | q | p |
若E(ξ)= .則p2+q2=( )
A.
B.
C.
D.1
【答案】C
【解析】解:∵p>0,q>0,E(ξ)= . ∴由隨機變量ξ的分布列的性質(zhì)得:
,
∴p2+q2=(q+p)2﹣2pq=1﹣ = .
故選:C.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(﹣x),當x∈(0,1)時,f(x)= , 則f(x)在區(qū)間(1,)內(nèi)是( 。
A.增函數(shù)且f(x)>0
B.增函數(shù)且f(x)<0
C.減函數(shù)且f(x)>0
D.減函數(shù)且f(x)<0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,點D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC,△ACD的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)+2sin2 ﹣1(ω>0,0<φ<π)為奇函數(shù),且相鄰兩對稱軸間的距離為 .
(1)當x∈(﹣ , )時,求f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象沿x軸方向向右平移 個單位長度,再把橫坐標縮短到原來的 (縱坐標不變),得到函數(shù)y=g(x)的圖象.當x∈[﹣ , ]時,求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)當x∈(1,+∞)時,xf(x)+xe1﹣x>1恒成立,求a的取值范圍.(其中,e=2.718…為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱錐P﹣ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M為PB的中點.
(Ⅰ)求證:PC⊥BC.
(Ⅱ)求二面角M﹣AC﹣B的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l與拋物線交于點A,B兩點,與x軸交于點M,直線OA,OB的斜率之積為.
(1)證明:直線AB過定點;
(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點,O為坐標原點,求|OE||OF|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過直線與的交點.
(1)點到直線的距離為3,求直線的方程;
(2)求點到直線的距離的最大值,并求距離最大時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點A(0,4),且在兩坐標軸上的截距之和為1.
(Ⅰ)求直線l的方程;
(Ⅱ)若直線l1與直線l平行,且l1與l間的距離為2,求直線l1的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com