分析 (1)由n≥2時(shí),an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}$-$\frac{(n-1)^{2}+(n-1)}{2}$=n,當(dāng)n=1時(shí),也適合上式,求得數(shù)列{an}的通項(xiàng)公式;
(2)由bn=$\frac{1}{{S}_{n}}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),利用“裂項(xiàng)法”即可求得數(shù)列{bn}的前n項(xiàng)和Tn.
解答 解:(1)當(dāng)n=1,a1=S1=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}$-$\frac{(n-1)^{2}+(n-1)}{2}$=n,
當(dāng)n=1時(shí),也適合上式,
∴數(shù)列{an}的通項(xiàng)公式為an=n,
(2)bn=$\frac{1}{{S}_{n}}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
則數(shù)列{bn}的前n項(xiàng)和為:Tn=b1+b2+b3+…+bn,
=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)],
=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$),
=2(1-$\frac{1}{n+1}$),
=$\frac{2n}{n+1}$,
數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{2n}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式,考查利用“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和公式的求法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{10}}}{10}$ | B. | $-\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{\sqrt{10}}}{10}i$ | D. | $-\frac{{\sqrt{10}}}{10}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外切 | B. | 內(nèi)切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | 0 | 1 |
P | 6a2-a | 3-7a |
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{3}$或$\frac{1}{3}$ | D. | 1或$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com