集合A={x|-2≤x≤2},B={0,2,4},則A∩B=(  )
A、{0}
B、{0,2}
C、[0,2]
D、{0,1,2}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由A與B,求出兩集合的交集即可.
解答: 解:∵A={x|-2≤x≤2},B={0,2,4},
∴A∩B={0,2}.
故選:B.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
cosx
x
關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)=
2cos2(
1
2
x-
1
2
)-1
x-1
-1的對(duì)稱中心的坐標(biāo)為( 。
A、(-1,1)
B、(1,1)
C、(1,-1)
D、(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P、Q是兩個(gè)非空數(shù)集,定義P與Q的差集P-Q={x|x∈P且x∉Q},已知集合A={x|a<x<0},集合B={x|-b<x<b},其中a,b是滿足|a|≥|b|的整數(shù),在集合A中隨機(jī)取一個(gè)整數(shù)c,若c屬于差集A-B的概率P1=
2
3
,屬于集合A∩B的概率P2=
1
3
,則整數(shù)a,b應(yīng)滿足的條件是( 。
A、a+3b=-1(b≥1,b∈Z)
B、a+3b=-1,(b≥2,b∈Z)
C、a+3b=2(b≥1,b∈Z)
D、a+3b=2,(b≥2,b∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)a、b、c有如下命題①若a>b則ac>bc;②若ac2>bc2則a>b;③若a<b<0則a2>ab>b2;④若a>b,
1
a
1
b
則a>0,b<0.其中正確的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1+i
i3
的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列計(jì)算:①(-2014)0=1;②2m-4=
1
2m4
;③x4+x3=x7;④(ab23=a3b6;⑤
(-35)2
=35,正確的是( 。
A、①B、①②③
C、①③④D、①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
是兩個(gè)非零向量,則下列命題正確的是(  )
A、若
a
b
,則|
a
-
b
|=|
a
|+|
b
|
B、若|
a
-
b
|=|
a
|+|
b
|,則
a
b
C、若存在實(shí)數(shù)λ,使得
a
b
,則|
a
-
b
|=|
a
|+|
b
|
D、若|
a
-
b
|=|
a
|+|
b
|,則存在實(shí)數(shù)λ,使得
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥側(cè)面PAB,△PAB是等邊三角形,DA=AB=2=0,BC=
1
2
AD,E是線段AB的中點(diǎn).
(1)求證:PE⊥CD;
(2)F為線段PC的中點(diǎn),求平面PBC與平面DEF所成銳二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2sinxcosx-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
π
4
,
π
4
]時(shí),求函數(shù)f(x)的最大值,并寫出x相應(yīng)的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案