下列命題正確的是( 。
A、異面直線a,b不垂直,則不存在互相垂直的平面α,β分別過(guò)a,b
B、直線l不垂直平面α,則α內(nèi)不存在與l垂直的直線
C、直線l與平面α平行,則過(guò)α內(nèi)一點(diǎn)有且只有一條直線與l平行
D、平面α,β垂直,則過(guò)α內(nèi)一點(diǎn)有無(wú)數(shù)條直線與β垂直
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:異面直線a,b不垂直,則存在互相垂直的平面α,β分別過(guò)a,b,故A錯(cuò)誤;
直線l不垂直平面α,則α內(nèi)存在與l垂直的直線,故B錯(cuò)誤;
直線l與平面α平行,則過(guò)α內(nèi)一點(diǎn)有且只有一條直線與l平行,由直線與平面平行的性質(zhì)得C正確;
平面α,β垂直,則過(guò)α內(nèi)一點(diǎn)有一條直線與β垂直,故D錯(cuò)誤.
故選:C.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,-3),B(2,1),C(1,4),D(-7,-4),試問(wèn)
AB
CD
是否共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α是第二象限角,其終邊上一點(diǎn)P的坐標(biāo)是(-
2
,y)
,且sinα=
2
4
y.
(1)求tanα的值;
(2)求
3sinα•cosα
4sin2α+2cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有大小、形狀相同的黑、白球各一個(gè),現(xiàn)在有放回地隨機(jī)摸取3次,每次摸一個(gè)球,若摸到黑球得1分,摸到白球得2分,則3次摸球所得總分超過(guò)4分的概率為( 。
A、
1
2
B、
3
8
C、
5
8
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足,a1=1,且
1
an+1
-
1
an
=2
(Ⅰ)求an的通項(xiàng)公式;
(Ⅱ)設(shè){anan+1}的前n項(xiàng)和為Tn,若Tn=
49
99
,試求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要從5名女生,7名男生中選出5名代表,按下列要求,分別有多少中不同的選法?
(1)至少有1名女生入選;
(2)至多有2名女生入選;
(3)男生甲和女生乙入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)為定義域D上單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D(其中a<b),使得當(dāng)x∈[a,b]時(shí),f(x)的取值范圍恰為[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]叫做等域區(qū)間.
(1)函數(shù)h(x)=x2(x≤0)是否是正函數(shù)?若是,求h(x)的等域區(qū)間,若不是,請(qǐng)說(shuō)明理由;
(2)已知f(x)=x
1
2
是[0,+∞)上的正函數(shù),求f(x)的等域區(qū)間;
(3)試探究是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x2+m是(-∞,0)上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x2-1(x≥0)
-1(x<0)
,則滿足f(4-x2)>f(4x)的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),對(duì)任意x∈R都有f(x)=f(x+4),當(dāng)x∈(-2,0)時(shí),f(x)=2x,則f(2013)-f(2011)的值為( 。
A、-1
B、1
C、
1
2
D、-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案