【題目】一士兵要在一個半徑為的圓形區(qū)域內(nèi)檢查是否埋有地雷,他所用的檢查儀器的有效作用范圍的半徑為.求該士兵從該圓邊界上一點出發(fā),至少需走多少米才能將區(qū)域檢測完,且回到出發(fā)點?
【答案】
【解析】
首先,求士兵從出發(fā),將圓的邊界上的所有點檢測完回到的最短路徑.
下面用反證法證明:
(1)上任意兩點連線段在所圍區(qū)域內(nèi)(含邊界),即是凸的;
(2)與圓內(nèi)部無交點.
(1)否則,設(shè)、,且線段在所圍區(qū)域外(如圖).
用線段代替中、間的曲線,得到另一條封閉曲線.
則曲線在所圍區(qū)域內(nèi)(含邊界).
對圓邊界上任一點,設(shè)士兵在上的點處檢測,則.
取線段與的交點為,則.
故士兵沿也可以將圓的邊界上所有點檢測.
但的長度小于的長度,矛盾.
(2)否則,設(shè)、,中、之間的曲線在圓內(nèi)部(如圖).
過圓心作交圓于點,其中,與曲線在直線同側(cè).
設(shè)線段與圓交于點.
由的凸性知,曲線與的其余部分在直線兩側(cè).
則,
即士兵沿無法檢測點,矛盾.
由(1),(2)知是含點且將圓包含在內(nèi)部的封閉曲線.
則的長度的最小值為(將想成套在圓上的繩子,當從點拉緊繩子時,得到繩子的最短長度為).
易證當時,士兵可沿將圓內(nèi)所有點檢測.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
若是函數(shù)的極值點,求實數(shù)a的值;
若對任意的為自然對數(shù)的底數(shù),都有成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為.
求橢圓的標準方程;
過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點在圓上運動,為線段的中點,則使△(為坐標原點)為直角三角形的點的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某校5個學生的數(shù)學和物理成績?nèi)缦拢?/span>
學生的編號 | 1 | 2 | 3 | 4 | 5 |
數(shù)學成績 | 80 | 75 | 70 | 65 | 60 |
物理成績 | 70 | 66 | 68 | 64 | 62 |
(1)通過大量事實證明發(fā)現(xiàn),一個學生的數(shù)學成績和物理成績是具有很強的線性相關(guān)關(guān)系的,在上述表格中,用表示數(shù)學成績,用表示物理成績,求關(guān)于的回歸方程.
(2)利用殘差分析回歸方程的擬合效果,若殘差和在范圍內(nèi),則稱回歸方程為“優(yōu)擬方程”,問:該回歸方程是否為“優(yōu)擬方程”.
(3)現(xiàn)從5名同學中任選兩人參加訪談活動,求1號同學沒被選中的概率.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為.
(1)求與的直角坐標方程;
(2)若與的交于點,與交于、兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com