【題目】在四棱錐中,平面,,,,點(diǎn)在線段上,且,為線段的中點(diǎn).
(1)求證:平面;
(2)若,求三棱錐的體積.
【答案】(1)見解析(2)
【解析】
(1)設(shè)AC∩BD=O,連接PO,通過證明EF為△POC的中位線,推出EF∥PO,然后EF∥平面PBD.
(2)利用VF﹣PADVC﹣PADVP﹣CAD,求解幾何體的體積即可.
(1) ∵AB=AD,CB=CD,∴AC⊥BD,設(shè)AC∩BD=O,連接PO,
由AB=AD=2,∠BAD=120
得:OA=1,BD=2,在RtCOD中,CD=, OD=
∴OC=2
∵AE=2EC,
∴E為OC中點(diǎn)
又∵F為PC的中點(diǎn)
∴EF為POC的中位線
∴EF∥PO
又PO面PBD EF面PBD
∴EF∥平面PBD
(2)在Rt△PAC中,PC=5,由(1)可知AC=3,∴PA=4
∴VF-PAD=VC-PAD=VP-CAD=×VP-ABCD=×××3×2×4=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上的點(diǎn)A(4,t)到其焦點(diǎn)F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線1的距離為2,求直線1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)記的導(dǎo)函數(shù)為,若不等式在區(qū)間上恒成立,求的取值范圍;
(3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若存在兩個(gè)極值點(diǎn),,且滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)如果對任意,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線C:及其準(zhǔn)線分別交于M,N兩點(diǎn),F為拋物線的焦點(diǎn),若,則m等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一士兵要在一個(gè)半徑為的圓形區(qū)域內(nèi)檢查是否埋有地雷,他所用的檢查儀器的有效作用范圍的半徑為.求該士兵從該圓邊界上一點(diǎn)出發(fā),至少需走多少米才能將區(qū)域檢測完,且回到出發(fā)點(diǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com