9.若函數(shù)f(x)=loga(x-1)+m(a>0,且a≠1)恒過定點(n,2),則m+n的值為4.

分析 由條件利用loga(n-1)+m=2 為定值,可得n-1=1,求得n的值,可得m的值,從而求得m+n的值.

解答 解:∵函數(shù)f(x)=loga(x-1)+m(a>0,且a≠1)的圖象經(jīng)過定點A(n,2),
可得loga(n-1)+m=2為定值,可得n-1=1,n=2,故m=2,m+n=4,
故答案為:4.

點評 本題主要考查函數(shù)的圖象經(jīng)過定點問題,對數(shù)函數(shù)的圖象過定點問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.化簡$\frac{sin(θ-5π)}{cos(3π-θ)}$•$\frac{cos(\frac{5π}{2}+θ)}{sin(θ-3π)}$•$\frac{cos(8π-θ)}{sin(-θ-4π)}$+sin(-θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,若a1=25,S9=S17,則該數(shù)列的前( 。╉椫妥畲螅
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合S={x|x≤-1或x≥2},P={x|a≤x≤a+3},若S∪P=R,則實數(shù)a的取值集合為( 。
A.{a|a≤0}B.{a|0≤a≤1}C.{a|a=1}D.{a|a=-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不論k為何值,直線(2k-1)x-(k-2)y-(k+4)=0恒過的一個定點是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的前n項和為Sn,且a1=1,S3=0.
(1)求{an}的通項公式;
(2){bn}為等比數(shù)列,且b1=2a1,b2=a6,求{bn}的前n項和Bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合M={x|x≥2},集合N={x|x>-1},則 M∪N=( 。
A.{x|x≥2}B.{x|x>-1}C.{x|x<2}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)求z=2x+y的最大值,使式中的x、y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1.\end{array}\right.$
(2)求z=2x+y的最大值,使式中的x、y滿足約束條件$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

同步練習(xí)冊答案