分析 (1)設(shè){an}的公差為d,運用等差數(shù)列的求和公式,可得d=-1,再由等差數(shù)列的通項公式即可得到所求;
(2)由等比數(shù)列的通項公式可得公比為-2,再由等比數(shù)列的求和公式,可得所求和.
解答 解:(1)設(shè){an}的公差為d,
由a1=1,S3=0,
可得3a1+3d=0,
解得d=-1,
從而an=2-n;
(2)b1=2a1=2,b2=a6=-4,
可得公比$q=\frac{b_2}{b_1}=-2$,
∴${B_n}=\frac{{{b_1}(1-{q^n})}}{1-q}=\frac{{2[1-{{(-2)}^n}]}}{3}$.
點評 本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com