【題目】已知拋物線的焦點(diǎn)為拋物線上存在一點(diǎn)到焦點(diǎn)的距離等于3.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn)(兩點(diǎn)在軸上方),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,,的外接圓的方程.

【答案】(1) (2)

【解析】試題分析:1拋物線的準(zhǔn)線方程為,所以點(diǎn) 到焦點(diǎn)的距離為,解得,從而可得拋物線的方程;2)設(shè)直線的方程為

代入并整理得,設(shè) , 根據(jù)韋達(dá)定理以及平面向量數(shù)量積公式可得,求得直線的中垂線方程聯(lián)立可得圓心坐標(biāo),根據(jù)點(diǎn)到直線距離公式以及勾股定理可得圓的半徑,從而可得外接圓的方程.

試題解析:(1)拋物線的準(zhǔn)線方程為

所以點(diǎn) 到焦點(diǎn)的距離為

解得

所以拋物線的方程為

2)設(shè)直線的方程為

代入并整理得,

,解得

設(shè) ,

,

因?yàn)?/span>

因?yàn)?/span>,所以

,又,解得

所以直線的方程為.設(shè)的中點(diǎn)為,

,

所以直線的中垂線方程為

因?yàn)?/span>的中垂線方程為,

所以△的外接圓圓心坐標(biāo)為

因?yàn)閳A心到直線的距離為,

,

所以圓的半徑

所以△的外接圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在過(guò)去50天的銷量和價(jià)格均為銷售時(shí)間t(天)的函數(shù)且銷售量近似地滿足f(t)=-2t+200(1t50,tN)前30天價(jià)格為g(t)=t+30(1≤t≤30,tN),后20天價(jià)格為g(t)=45(31≤t≤50,tN).

(1)寫(xiě)出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系式;

(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于直徑為BC的圓O,過(guò)點(diǎn)A作圓O的切線交CB的延長(zhǎng)線于點(diǎn)P,∠BAC的平分線分別交BC和圓O于點(diǎn)D、E,若PA=2PB=10.

(1)求證:AC=2AB;
(2)求ADDE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2007全運(yùn)會(huì)上兩名射擊運(yùn)動(dòng)員甲、乙在比賽中打出如下成績(jī):

甲:9.4,8.77.5,8.4,10.1,10.510.7,7.27.8,10.8

乙:9.1,8.77.1,9.8,9.7,8.5,10.19.2,10.19.1;

(1)用莖葉圖表示甲,乙兩個(gè)成績(jī);并根據(jù)莖葉圖分析甲、乙兩人成績(jī);

2)分別計(jì)算兩個(gè)樣本的平均數(shù)和標(biāo)準(zhǔn)差,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n和為Sn , a1=2,當(dāng)n≥2時(shí),2Sn﹣an=n,則S2016的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為, 為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程和離心率;

(Ⅱ)設(shè)點(diǎn),動(dòng)點(diǎn)在橢圓上,且軸的右側(cè),線段的垂直平分線軸相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l: (t為參數(shù),α≠0)經(jīng)過(guò)橢圓C: (φ為參數(shù))的左焦點(diǎn)F.
(1)求實(shí)數(shù)m的值;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|×|FB|取最小值時(shí),直線l的傾斜角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車,每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)gx)=ax2-2ax+1+ba>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記fx)=g(|x|).

(1)求實(shí)數(shù)a,b的值;

(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案