1.在由數(shù)字0,1,2,3,4,5組成的沒有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有(  )
A.372B.180C.192D.300

分析 根據(jù)題意,用排除法,首先計算所有符合條件的4位數(shù)的數(shù)目,再計算其中可以被5整除的,即末位數(shù)字是0或5的四位數(shù)的數(shù)目,進(jìn)而相減可得答案.

解答 解:根據(jù)題意,用排除法,不能被5整除實(shí)質(zhì)上是末位數(shù)字不是0或5,
則可以在全部符合條件的四位數(shù)中排除末位數(shù)字是0或5的即可;
所有4位數(shù)有A51•A53=300個,
末位為0時有A53=60個,末位為5時有A41•A42=4×12=48個,
則不能被5整除的數(shù)共有有300-60-48=192個;
故選:C.

點(diǎn)評 本題考查排列、組合的運(yùn)用,要轉(zhuǎn)化思想,運(yùn)用特殊方法,如本題的間接法,此外還有倍分法,捆綁法等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=cosx的值域是[0,1],則x的取值范圍是[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,既是偶函數(shù),又是區(qū)間(0,3)內(nèi)是增函數(shù)的是(  )
A.y=log${\;}_{\frac{1}{2}}$|x|B.y=cosxC.y=ex+e-xD.y=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個單位,所得函數(shù)圖象的一條對稱軸是直線(  )
A.x=$\frac{π}{3}$B.x=$\frac{π}{8}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是( 。
A.f(x)=ln$\sqrt{1+{x}^{2}}$B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$D.f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}sin(x+α),x≤0\\ cos(x+α),x>0\end{array}$,則“α=$\frac{π}{4}$”是“函數(shù)f(x)是偶函數(shù)“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m、n分別為連續(xù)兩次投擲骰子得到的點(diǎn)數(shù),且向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(1,-1),則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列的前4項為2,0,2,0,則依次歸納該數(shù)列的通項不可能是( 。
A.an=(-1)n-1+1B.an=$\left\{\begin{array}{l}{2,n為奇數(shù)}\\{0,n為偶數(shù)}\end{array}\right.$
C.an=2sin$\frac{nπ}{2}$D.an=cos(n-1)π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,滿足f(-x)+f(x)=0的單調(diào)遞增函數(shù)是(  )
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

同步練習(xí)冊答案