11.下列函數(shù)中,滿足f(-x)+f(x)=0的單調(diào)遞增函數(shù)是(  )
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

分析 根據(jù)函數(shù)的關(guān)系式可得函數(shù)為奇函數(shù),C,D顯然不是奇函數(shù),
f(x)=-x-1在定義域內(nèi)有增有減.η

解答 解:f(-x)+f(x)=0,
∴f(x)=-f(-x),
∴函數(shù)為奇函數(shù),排除C,D;
函數(shù)為增函數(shù),排除C選項,
故選:A.

點評 考查了奇函數(shù)的性質(zhì)和函數(shù)的單調(diào)性.屬于常規(guī)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在由數(shù)字0,1,2,3,4,5組成的沒有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有( 。
A.372B.180C.192D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標系xOy中,點P是圓x2+y2=4上一動點.PD⊥x軸于點D,記滿足$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OD}$)的動點Q的軌跡為C.
(1)求軌跡C的方程;
(2)過原點O的直線l與曲線C交于M,N兩點,A(-1,-$\frac{1}{2}$)是一定點,求△MAN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)p:|x-a|>3,q:(x+1)(2x-1)≥0,若¬p是q的充分不必充要條件,則實數(shù)a的取值范圍是(-∞,-4]∪[$\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),滿足f(0)=f($\frac{π}{3}$),且函數(shù)在[0,$\frac{π}{2}$]上有且只有一個零點,則f(x)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求10cot(arc cot3+arccot7+arccot13+arccot21)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時,f(x)=x-2,則( 。
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(sin$\frac{π}{2}$)>f(cos$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.有3名男生、4名女生,按下述要求,分別求出其不同的排列的種數(shù).
(1)選其中5人擔(dān)任班級監(jiān)督員;
(2)選出2名男生、3名女生共5人擔(dān)任5種不同的班委職務(wù),男生甲必須擔(dān)任班長或?qū)W習(xí)委員;
(3)選出5人排成一行,其中女生必須相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,左、右頂點分別為A、B,P是橢圓上一點,記直線PA、PB的斜率為k1,k2,且k1k2=-$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C交于M、N兩點,以M、N為直徑的圓經(jīng)過原點,且線段MN的垂直平分線在y軸上的截距為-$\frac{1}{5}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案