分析 (1)根據(jù)點(diǎn)到直線的距離等于半徑求出圓的標(biāo)準(zhǔn)方程,設(shè)直線的方程為:y=-x+b聯(lián)立x2+y2=4,利用${x_1}x{\;}_2+{y_1}{y_2}=2{x_1}x{\;}_2-b({x_1}+{x_2})+{b^2}=0$,即可求直線的縱截距;
(2)設(shè)出切線的斜率,利用點(diǎn)到直線的距離等于半徑,建立方程求出切線斜率即可得到結(jié)論.
解答 解:(1)圓心到直線的距離d=$\frac{|0-2\sqrt{2}|}{\sqrt{2}}$=2,即圓的半徑R=2,
則圓C的方程為x2+y2=4,
設(shè)直線的方程為:y=-x+b聯(lián)立x2+y2=4得:2x2-2bx+b2-4=0,
設(shè)直線與圓的交點(diǎn)P(x1,y1),Q(x2,y2),
由△=(-2b)2-8(b2-4)>0,得b2<8,${x_1}+{x_2}=b,{x_1}•{x_2}=\frac{{{b^2}-4}}{2}$①
因?yàn)镺P⊥OQ,所以$\overrightarrow{OP}•\overrightarrow{OQ}=0$,即滿足x1x2+y1y2=0,
又y1=-x1+b,y2=-x2+b,
所以${x_1}x{\;}_2+{y_1}{y_2}=2{x_1}x{\;}_2-b({x_1}+{x_2})+{b^2}=0$②
由①②得b2=4,滿足△>0,即b=2或-2.
(3)因?yàn)辄c(diǎn)G(1,3)在圓外,設(shè)切線的斜率為k,
則直線方程為y-3=k(x-1),
即kx-y+3-k=0,
則圓心到直線的距離d=$\frac{|3-k|}{\sqrt{{k}^{2}+1}}$=2,
即|3-k|=2$\sqrt{{k}^{2}+1}$,
平方得9-6k+k2=4k2+4,
即3k2+6k-5=0,
得k=$\frac{-6±\sqrt{36+4×3×5}}{6}$=$\frac{-6±4\sqrt{6}}{6}$=$\frac{-3±2\sqrt{6}}{3}$,
當(dāng)k=$\frac{-3+2\sqrt{6}}{3}$時,切線方程為$\frac{-3+2\sqrt{6}}{3}$x-y+3-$\frac{-3+2\sqrt{6}}{3}$=0,
當(dāng)k=$\frac{-3-2\sqrt{6}}{3}$時,切線方程為$\frac{-3-2\sqrt{6}}{3}$x-y+3-$\frac{-3-2\sqrt{6}}{3}$=0.
點(diǎn)評 本題主要考查直線和圓的位置關(guān)系,利用點(diǎn)到直線的距離等于半徑,建立方程關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1>-1 | B. | x2<0 | C. | x3>2 | D. | 0<x2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,2) | B. | $(0,\frac{1}{2})$ | C. | [1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 300° | B. | 250° | C. | 200° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{2}$個單位 | B. | 向左平移$\frac{π}{4}$個單位 | ||
C. | 向左平移$\frac{π}{2}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 歸納推理 | B. | 類比推理 | C. | 合情推理 | D. | 演繹推理 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com