2.已知四棱錐P-ABCD的底面是正方形,PA⊥平面ABCD,且PA=AD,則平面PAB與平面PCD所成的二面角的度數(shù)為450

分析 如圖,過點(diǎn)P作直線l∥AB,直線l就是平面PAB與平面PCD的交線,故∠DPA就是平面PAB與平面PCD所成的二面角的平面角,在直角△PAD△中可知∠DPA=45°.

解答 解:如圖,過點(diǎn)P作直線l∥AB,直線l就是平面PAB與平面PCD的交線,
∵PA⊥面ABCD,∴PA⊥CD,又∵CD⊥AD,∴CD⊥面PAD
即CD⊥PD,∴PD⊥l,PA⊥l,故∠DPA就是平面PAB與平面PCD所成的二面角的平面角,
在直角△PAD△中可知∠DPA=45°.
故答案為:450

點(diǎn)評 本題考查了二面角的求解,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)i為虛數(shù)單位,若復(fù)數(shù)$\frac{i}{1+i}$的實(shí)部為a,復(fù)數(shù)(1+i)2的虛部為b,則復(fù)數(shù)z=a-bi在復(fù)平面內(nèi)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

函數(shù)的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,sinA,ainB,sinC成等比數(shù)列,則當(dāng)cosB的值最小時(shí),$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知ABCD是正方形,PD⊥平面ABCD,PD=AD.
(1)求二面角A-PB-D的大。
(2)在線段PB上是否存在一點(diǎn)E,使PC⊥平面ADE?若存在,確定E點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知四棱柱ABC-A1B1C1D1的底面是邊長為2的菱形,且∠BAD=$\frac{π}{3}$,AA1⊥平面ABCD,設(shè)E為CD的中點(diǎn)
(1)求證:D1E⊥平面BEC1;
(2)點(diǎn)a在線段A1B1上,且AF∥平面BEC1,求平面ADF和平面BEC1所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點(diǎn)$({\sqrt{2},\sqrt{2}})$,直線l:y=kx(k≠0)與橢圓E交于P、A兩點(diǎn),過點(diǎn)P作PC⊥x軸,垂足為C點(diǎn),直線AC交橢圓E與另一點(diǎn)B,當(dāng)$k=\sqrt{2}$時(shí),橢圓E的右焦點(diǎn)到直線l的距離為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)試問∠APB是否為定值?若為定值,求出其值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知公差不為0的等差數(shù)列{an},若a2+a4=10,且a1、a2、a5成等比數(shù)列,則a1=1,an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)對任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對稱,且f(1)=2,則f(2009)=( 。
A.-2B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案