【題目】已知橢圓: ( )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若, 的中點(diǎn)為,在線段上是否存在點(diǎn),使得?若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺機(jī)床同時生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機(jī)抽取這兩臺車床生產(chǎn)的零件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | |||||
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機(jī)床、乙機(jī)床生產(chǎn)的零件為正品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機(jī)床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)為線段的中垂線與橢圓的一個公共點(diǎn),求面積的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中, , 為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成.若為線段的中點(diǎn),則在翻折過程中:
①是定值;②點(diǎn)在某個球面上運(yùn)動;
③存在某個位置,使;④存在某個位置,使平面.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017 年省內(nèi)某事業(yè)單位面向社會公開招騁工作人員,為保證公平競爭,報名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于分的才有資格參加面試, 分以下(不含分)則被淘汰,現(xiàn)有名競騁者參加筆試,參加筆試的成績按區(qū)間分段,其頻率分布直方圖如圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為,且筆試成績在的人數(shù)為.
(1)根據(jù)頻率分布直方圖,估算競騁者參加筆試的平均成績;
(2)若在面試過程中每人最多有次選題答題的機(jī)會,累計答對題或答錯題, 答對題者方可參加復(fù)賽,已知面試者甲答對每一個問題的概率都相同,并且相互之間沒有影響,若他連續(xù)三次答題中答對一次的概率為,求面試者甲答題個數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: ,定點(diǎn)(常數(shù))的直線與曲線相交于、兩點(diǎn).
(1)若點(diǎn)的坐標(biāo)為,求證:
(2)若,以為直徑的圓的位置是否恒過一定點(diǎn)?若存在,求出這個定點(diǎn),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016-2017學(xué)年遼寧省六校協(xié)作體高二下學(xué)期期初數(shù)學(xué)(理)】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線相切.
(1)求直線被圓所截得的弦的長;
(2)過點(diǎn)作兩條與圓相切的直線,切點(diǎn)分別為求直線的方程;
(3)若與直線垂直的直線與圓交于不同的兩點(diǎn),若為鈍角,求直線 在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點(diǎn).
(1)證明:MN∥平面PAD;
(2)若PA與平面ABCD所成的角為45°,求四棱錐P﹣ABCD的體積V.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com