【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點(diǎn)為,在線段上是否存在點(diǎn),使得?若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析】(1)依據(jù)題設(shè)運(yùn)用余弦定理及已知條件建立方程進(jìn)行求解;(2)依據(jù)題設(shè)先建立直線的方程,再運(yùn)用直線與橢圓的位置關(guān)系分析求解:

(Ⅰ)由, , ,

由余弦定理得, ,

解得 , ,

所以橢圓的方程為. 

(Ⅱ)存在這樣的點(diǎn)符合題意.

設(shè), ,

,設(shè)直線的方程為,

,

由韋達(dá)定理得,故

又點(diǎn)在直線上, ,所以.

因?yàn)?/span>,所以,整理得,

所以存在實(shí)數(shù),且的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

機(jī)床甲

8

12

40

32

8

機(jī)床乙

7

18

40

29

6

(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為正品的概率;

(2)甲機(jī)床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機(jī)床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤(rùn)的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長(zhǎng)為2,且函數(shù)的圖象與橢圓僅有兩個(gè)公共點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為線段的中垂線與橢圓的一個(gè)公共點(diǎn),求面積的最小值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成.若為線段的中點(diǎn),則在翻折過程中:

是定值;②點(diǎn)在某個(gè)球面上運(yùn)動(dòng);

③存在某個(gè)位置,使;④存在某個(gè)位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017 年省內(nèi)某事業(yè)單位面向社會(huì)公開招騁工作人員,為保證公平競(jìng)爭(zhēng),報(bào)名者需要參加筆試和面試兩部分,且要求筆試成績(jī)必須大于或等于分的才有資格參加面試, 分以下(不含分)則被淘汰,現(xiàn)有名競(jìng)騁者參加筆試,參加筆試的成績(jī)按區(qū)間分段,其頻率分布直方圖如圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為,且筆試成績(jī)?cè)?/span>的人數(shù)為.

(1)根據(jù)頻率分布直方圖,估算競(jìng)騁者參加筆試的平均成績(jī);

(2)若在面試過程中每人最多有次選題答題的機(jī)會(huì),累計(jì)答對(duì)題或答錯(cuò)題, 答對(duì)題者方可參加復(fù)賽,已知面試者甲答對(duì)每一個(gè)問題的概率都相同,并且相互之間沒有影響,若他連續(xù)三次答題中答對(duì)一次的概率為,求面試者甲答題個(gè)數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級(jí)品,2件二級(jí)品,一級(jí)品和二級(jí)品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計(jì)算:
(1)2件都是一級(jí)品的概率;
(2)至少有一件二級(jí)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,定點(diǎn)(常數(shù))的直線與曲線相交于、兩點(diǎn).

(1)若點(diǎn)的坐標(biāo)為,求證:

(2)若,以為直徑的圓的位置是否恒過一定點(diǎn)?若存在,求出這個(gè)定點(diǎn),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016-2017學(xué)年遼寧省六校協(xié)作體高二下學(xué)期期初數(shù)學(xué)(理)】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線相切.

(1)求直線被圓所截得的弦的長(zhǎng);

(2)過點(diǎn)作兩條與圓相切的直線,切點(diǎn)分別為求直線的方程;

(3)若與直線垂直的直線與圓交于不同的兩點(diǎn),若為鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,PD⊥底面ABCD,且底面ABCD是邊長(zhǎng)為2的正方形,M、N分別為PB、PC的中點(diǎn).

(1)證明:MN∥平面PAD;
(2)若PA與平面ABCD所成的角為45°,求四棱錐P﹣ABCD的體積V.

查看答案和解析>>

同步練習(xí)冊(cè)答案