已知圓經(jīng)過(guò)坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線(xiàn)經(jīng)過(guò)點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線(xiàn)的方程.
(1);(2)或
解析試題分析:(1)本題求圓的方程,已知圓上兩點(diǎn)即圓心的縱坐標(biāo),所以需要求出圓的半徑和圓心的橫坐標(biāo)兩個(gè)值即可確定圓的方程,通過(guò)列解方程即可求出相應(yīng)的量,該題的半徑的長(zhǎng)剛好就是圓心的橫坐標(biāo)的值,這個(gè)條件要用上.
(2)該小題是直線(xiàn)與圓的位置關(guān)系問(wèn)題,特別要先判斷直線(xiàn)的斜率不存在的時(shí)候的情況,通過(guò)畫(huà)圖可知符合條件,其次是斜率存在時(shí),通過(guò)重點(diǎn)三角形(弦心距,半弦長(zhǎng),半徑)的關(guān)系可以求出弦心距的長(zhǎng),從而再用圓心到直線(xiàn)的距離公式求出直線(xiàn)的斜率,又過(guò)已知點(diǎn)即可寫(xiě)出直線(xiàn)方程.
試題解析:(1)設(shè)圓的圓心坐標(biāo)為,
依題意,有,
即,解得,
所以圓的方程為.
(2)依題意,圓的圓心到直線(xiàn)的距離為,
所以直線(xiàn)符合題意.另,設(shè)直線(xiàn)方程為,即,
則,
解得, 所以直線(xiàn)的方程為,即.
綜上,直線(xiàn)的方程為或.
考點(diǎn):1.直線(xiàn)與圓的關(guān)系.2.圓的標(biāo)準(zhǔn)方程.3.分類(lèi)歸納思想.4.運(yùn)算能力的鍛煉.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:(x-3)2+(y-4)2=4,直線(xiàn)l1過(guò)定點(diǎn)A(1,0).
(1)若l1與圓相切,求l1的方程;
(2)若l1與圓相交于P、Q兩點(diǎn),線(xiàn)段PQ的中點(diǎn)為M,又l1與l2:x+2y+2=0的交點(diǎn)為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C1:x2+y2-2y=0,圓C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個(gè)動(dòng)點(diǎn),且直線(xiàn)PC1,PC2的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡M的方程;
(2)是否存在過(guò)點(diǎn)A(2,0)的直線(xiàn)l與軌跡M交于不同的兩點(diǎn)C,D,使得|C1C|=|C1D|?若存在,求直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)求圓心在軸上,且與直線(xiàn)相切于點(diǎn)的圓的方程;
(2)已知圓過(guò)點(diǎn),且與圓關(guān)于直線(xiàn)對(duì)稱(chēng),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄A經(jīng)過(guò)點(diǎn)和
(Ⅰ)當(dāng)圓面積最小時(shí),求圓的方程;
(Ⅱ)若圓的圓心在直線(xiàn)上,求圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,直線(xiàn),過(guò)上一點(diǎn)A作,使得,邊AB過(guò)圓心M,且B,C在圓M上,求點(diǎn)A縱坐標(biāo)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的圓心在直線(xiàn)上,且與軸交于兩點(diǎn),.
(1)求圓的方程;
(2)求過(guò)點(diǎn)的圓的切線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點(diǎn)為,試探究在圓上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一個(gè)不透明的袋子,裝有4個(gè)完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(2)若先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為a,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為b,求直線(xiàn)ax+by+1=0與圓有公共點(diǎn)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com