在如圖所示的多面體中,,

(Ⅰ)求證:
(Ⅱ)求證:

證明過程詳見試題解析.

解析試題分析:(Ⅰ)由線線垂直得到線面垂直,再根據(jù)直線所在的平面得到線線垂直;(Ⅱ)根據(jù)性質(zhì)定理:“一條直線與一個平面平行,那么過這條直線作一個平面與此平面相交,那么該直線與交線平行.”來證明.
試題解析:(Ⅰ)證明:因為,, 又,平面,所以平面.由于平面, 所以.
(Ⅱ)證明:因為,又平面,平面,所以平面, 而平面,平面平面,所以
考點:(Ⅰ)線面垂直的性質(zhì)定理;(Ⅱ)線面平行的性質(zhì)定理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面的中點,.

(1)試判斷直線與平面的位置關(guān)系,并予以證明;
(2)若四棱錐體積為  ,,求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,,,側(cè)面為等邊三角形

(1)證明:
(2)求AB與平面SBC所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正三棱柱中,,分別為的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是正方形,平面,,,分別為,的中點.

(1)求證:平面
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點,AC=BC=AA1=A1C=2。

(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,⊥平面

(1)求證:;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

右圖為一組合體,其底面為正方形,平面,,且

(Ⅰ)求證:平面
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.

查看答案和解析>>

同步練習冊答案