右圖為一組合體,其底面為正方形,平面,,且
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.
(1)證明過程詳見解析;(2)2;(3).
解析試題分析:本題主要考查線線垂直、平行的判定、線面垂直的判定、幾何體的體積和表面積的計算,考查空間想象能力、推理論證能力和運算能力.第一問,利用線面平行的判定得出平面,平面,所以可得到平面平面,所以利用面面平行的性質(zhì)得證結(jié)論;第二問,利用線面垂直得到線線垂直,又因為,所以得到線面垂直,所以是所求錐體的高,利用梯形面積公式求底面的面積,再利用體積公式求體積;第三問,利用已知的邊的關(guān)系和長度,可以求出組合體中每一條邊的長度,從而求出每一個面的面積,最后求和加在一起即可.
試題解析:(Ⅰ)∵,平面,平面,
∴平面,
同理可證:平面,
∵平面,平面,且,
∴平面平面,
又∵平面,∴平面,
(Ⅱ)∵平面,平面,
∴,
∵,
∴平面,
∵,
∴四棱錐的體積,
(Ⅲ)∵,,
∴,
又∵,,,,,
∴組合體的表面積為.
考點:1.線面平行的判定;2.面面平行的判定;3.梯形面積公式;4.錐體體積公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是棱的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖①,△BCD內(nèi)接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個三棱錐ABCD,如圖②.
(1)求證:AB⊥CD;
(2)求直線BD和平面ACD所成的角的正切值;
(3)求四面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大。
(2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長方體中,為中點.
(1)求證:;
(2)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由;
(3)若二面角的大小為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com