曲線y=x3-1在x=1處的切線方程為___________
y=3x-3 
考查導數(shù)的幾何意義的運用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)【理科】已知函數(shù)
(I)求的極值;
(II)若的取值范圍;
(III)已知

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長為100千米的鐵路線AB旁的C處有一個工廠,工廠與鐵路的距離CA為20千米.由鐵路上的B處向工廠提供原料,公路與鐵路每噸千米的貨物運價比為5∶3,為節(jié)約運費,在鐵路的D處修一貨物轉(zhuǎn)運站,設AD距離為x千米,沿CD直線修一條公路(如圖).

(1)將每噸貨物運費y(元)表示成x的函數(shù).
(2)當x為何值時運費最。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,(其中實數(shù)不同時為零),當時,有,當時,
(1) 求函數(shù)式;
(2)求函數(shù)的單調(diào)遞減區(qū)間;
(3)若對,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用定義求函數(shù),處的導數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定義為函數(shù)的邊際函數(shù),某企業(yè)每月最多生產(chǎn)臺報警器,已知每生產(chǎn)臺的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤是收入與成本的差。(1)求利潤函數(shù)及其邊際函數(shù);(2)利潤函數(shù)及其邊際函數(shù)是否有相等的最大值?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間上的平均變化率為,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一輛列車沿直線軌道前進,從剎車開始到停車這段時間內(nèi),測的剎車后秒內(nèi)列車
前進的距離為米,則列車剎車后   秒車停下來,期間列車前進了   米.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(改編題)
(理)設曲線在點處的切線與直線垂直,則實數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案