17.一片森林原有面積為a,現(xiàn)計(jì)劃每年采伐一些樹木,且每年采伐的森林面積占上一年底森林面積的百分比為q,即第x(x∈N)年底的剩余森林面積為y=a(1-q)x,x與y的部分對(duì)應(yīng)值如表:
 x 0 1 2
 y a $\frac{20}{3}$ $\frac{40}{9}$
(1)求原有森林面積a和每年采伐森林面積的百分比q;
(2)問(wèn)經(jīng)過(guò)多少年后,剩余的森林面積開(kāi)始小于原來(lái)的$\frac{1}{10}$.
(注:lg2≈0.301,lg3≈0.477)

分析 (1)利用已知條件列出方程組求解原有森林面積a和每年采伐森林面積的百分比q.
(2)利用數(shù)列的通項(xiàng)公式列出不等式求解即可.

解答 解:(1)由題意知,$\left\{\begin{array}{l}a(1-q)=\frac{20}{3}\\ a{(1-q)^2}=\frac{40}{9}\end{array}\right.$,解得$\left\{\begin{array}{l}a=10\\ q=\frac{1}{3}\end{array}\right.$.…(5分)
(2)由題意得,$y=10×{(\frac{2}{3})^x}$,要使剩余森林面積開(kāi)始小于原來(lái)的$\frac{1}{10}$,
則$10×{(\frac{2}{3})^x}<\frac{1}{10}×10$,即${(\frac{2}{3})^x}<\frac{1}{10}$,…(7分)
兩邊取對(duì)數(shù)并整理得,$x>\frac{{lg\frac{1}{10}}}{lg2-lg3}=\frac{1}{0.477-0.301}≈5.68$.…(11分)
又x∈N,故經(jīng)過(guò)6年后剩余森林面積開(kāi)始小于原來(lái)的$\frac{1}{10}$.…(12分)

點(diǎn)評(píng) 本題考查數(shù)列與函數(shù)的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某生物研究者于元旦在湖中放入一些鳳眼蓮,這些鳳眼蓮在湖中的蔓延速度越來(lái)越快,二月底測(cè)得鳳眼蓮覆蓋面積為24m2,三月底測(cè)得覆蓋面積為36m2,鳳眼蓮覆蓋面積y(單位:m2)與月份x(單位:月)的關(guān)系有兩個(gè)函數(shù)模型y=kax(k>0,a>1)與y=px${\;}^{\frac{1}{2}}$+q(p>0)可供選擇.
(Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求鳳眼蓮覆蓋面積是元旦放入面積10倍以上的最小月份.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是(  )
A.y=x-1B.$y={({\frac{1}{2}})^x}$C.$y=\frac{1}{1-x}$D.y=x2-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,△A'O'B'為水平放置的△AOB的直觀圖,且O'A'=2,O'B'=3,則△AOB的周長(zhǎng)為(  )
A.12B.10C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),有以下四個(gè)推斷:
(1)f(0)=0;
(2)若f(-2)=1,則f(2)=1;
(3)若f(x)在[1,+∞)上為減函數(shù),則f(x)在(-∞,-1]上為增函數(shù);
(4)若f(x)在(0,+∞)上有最小值-m,則f(x)在(-∞,0)上有最大值m.
其中推斷正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-1≥0}\\{y-x-1≤0}\\{x≤1}\end{array}\right.$,則z=2x+3y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a,b∈R,若點(diǎn)M(1,2)在矩陣A=$[\begin{array}{l}{a}&{1}\\&{4}\end{array}]$對(duì)應(yīng)的變換作用下得到點(diǎn)N(2,-7),求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若關(guān)于的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍為0<k<$\frac{3}{4}$或k=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.2016年10月中旬臺(tái)風(fēng)“莎莉嘉”登陸某海濱城市,某條長(zhǎng)度為10千米的供電線路遭到嚴(yán)重破壞,造成大面積停電,為了快速恢復(fù)通電,某電力公司組織人員進(jìn)行搶修,同時(shí)為了保證質(zhì)量,搶修速度不得超過(guò)c千米/小時(shí),已知每小時(shí)的搶修成本(以元為單位)由可變部分和固定部分組成:可變部分與搶修的速度v(單位:千米/小時(shí))的平方成正比,比例系數(shù)為400,固定部分為10000元.
(1)把搶修成本y(元)表示為速度v(千米/小時(shí))的函數(shù),并指出函數(shù)的定義域;
(2)為使搶修成本最小,電力公司應(yīng)該以多大的速度進(jìn)行搶修?

查看答案和解析>>

同步練習(xí)冊(cè)答案