10.求下列各式的值.
(1)${({\frac{9}{4}})^{\frac{1}{2}}}+(9.6{)^0}-{({\frac{8}{27}})^{-\frac{1}{3}}}$;
(2)log28+lg25+lg4.

分析 (1)利用有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則求解.
(2)利用對(duì)數(shù)的性質(zhì)、運(yùn)算法則求解.

解答 解:(1)${({\frac{9}{4}})^{\frac{1}{2}}}+(9.6{)^0}-{({\frac{8}{27}})^{-\frac{1}{3}}}$
=$\frac{3}{2}+1-\frac{3}{2}=1$…(5分)
(2)log28+lg25+lg4
=$lo{g_2}{2^3}+lg{10^2}=5$…(5分)

點(diǎn)評(píng) 本題考查指數(shù)式、對(duì)數(shù)式的化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)、對(duì)數(shù)性質(zhì)及運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,在(0,+∞)上是減函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=x2+1C.y=2xD.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是奇函數(shù),又在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=lnxB.y=x3C.y=3xD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三個(gè)不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同時(shí)滿足(1)(2)的x也滿足(3).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=3x與$f(x)={({\frac{1}{3}})^x}$的圖象關(guān)于(  )
A.坐標(biāo)原點(diǎn)對(duì)稱B.x軸對(duì)稱C.y軸對(duì)稱D.直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x∈(0,+∞),觀察下列各式:
x+$\frac{1}{x}$≥2,
x+$\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3,
x+$\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}$≥4,

類比得:x+$\frac{a}{x^n}≥n+1(n∈{N^*})$,則a=nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若冪函數(shù)f(x)=(m2-m-5)xm-1在區(qū)間(0,+∞)上是增函數(shù),則實(shí)數(shù)m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等腰直角三角形的直角邊的長(zhǎng)為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為4$\sqrt{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=4x的焦點(diǎn)F,準(zhǔn)線為l,點(diǎn)P為拋物線上一點(diǎn),且在第一象限,過P點(diǎn)作PA⊥l,垂足為A,|PF|=4,則$\overrightarrow{AF}$•$\overrightarrow{FP}$的值為-8.

查看答案和解析>>

同步練習(xí)冊(cè)答案