分析 由已知利用同角三角函數(shù)基本關系式可求cosα,cosβ的值,利用兩角和的余弦函數(shù)公式即可計算求值.
解答 (本題滿分6分)
解:∵sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$,cos$β=\sqrt{1-si{n}^{2}β}$=$\frac{3\sqrt{10}}{10}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$-$\frac{{\sqrt{5}}}{5}$×$\frac{{\sqrt{10}}}{10}$=$\frac{\sqrt{2}}{2}$.
故cos(α+β)的值為:$\frac{\sqrt{2}}{2}$.
點評 本題主要考查了同角三角函數(shù)基本關系式,兩角和的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 6 | C. | -6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值1,無最小值 | B. | 有最大值$\frac{\sqrt{3}}{2}$,最小值$\frac{1}{2}$ | ||
C. | 有最小值$\frac{\sqrt{3}}{2}$,無最大值 | D. | 有最大值1,最小值$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com