【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線 的一個焦點在拋物線的準線上,則直線軸的交點到雙曲線的一條漸近線的距離是( )

A. 2 B. C. D. 1

【答案】D

【解析】拋物線的焦點為,由弦長計算公式有 ,所以拋物線的標(biāo)線方程為,準線方程為 ,故雙曲線的一個焦點坐標(biāo)為,即 ,所以 ,漸近線方程為,直線 方程為,所以點,點P到雙曲線的一條漸近線的距離為 ,選D.

點睛: 本題主要考查了拋物線與雙曲線的簡單幾何性質(zhì), 屬于中檔題. 先由直線過拋物線的焦點,求出弦長,由弦長求出的值,根據(jù)雙曲線中的關(guān)系求出 ,漸近線方程等,由點到直線距離公式求出點P到雙曲線的一條漸近線的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抗洪搶險中,準備用射擊的方法引爆從橋上游漂流而下的一個巨大的汽油灌,已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊相互獨立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實數(shù),滿足,則都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)都不為0”;

③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為;

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與直線垂直,求的值;

(2)討論方程的實數(shù)根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)

1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側(cè)棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D的中點,AC平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖5所示,已知四棱錐中,底面為矩形, 底面,

, 的中點.

⑴指出平面的交點所在位置,并給出理由;

⑵求平面將四棱錐分成上下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義,某快餐企業(yè)的營銷部門對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨填上和降雨量的大小有關(guān).

(1)天氣預(yù)報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設(shè)計模擬實驗的方法研究三天中恰有兩天降雨的概率,利用計算機產(chǎn)生0大9之間取整數(shù)值的隨機數(shù),并用表示下雨,其余個數(shù)字表示不下雨,產(chǎn)生了20組隨機數(shù):

求由隨機模擬的方法得到的概率值;

(2)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不在造成過多浪費,預(yù)測降雨量為6毫米時需要準備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= 在[0, ]上是減函數(shù),則a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案