6.若全集U={-1,0,1,2},P={x∈z|-$\sqrt{2}$<x$<\sqrt{2}$},則∁UP=( 。
A.{2}B.{0,2}C.{-1,2}D.{-1,0,2}

分析 化簡(jiǎn)集合P,根據(jù)補(bǔ)集的定義寫出∁UP即可.

解答 解:全集U={-1,0,1,2},
P={x∈z|-$\sqrt{2}$<x$<\sqrt{2}$}={-1,0,1},
所以∁UP={2}.
故選:A.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知常數(shù)a,b∈R,且不等式x-alnx+a-b<0解集為空集,則ab的最大值為$\frac{1}{2}$e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,則( 。
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β+2cos2α=0D.cos2β=2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若l、m、n是互不重合的直線,α、β是不重合的平面,則下列命題中為真命題的是( 。
A.若α⊥β,l?α,n?β,則l⊥nB.若l⊥α,l∥β,則α⊥β
C.若l⊥n,m⊥n,則l∥nD.若α⊥β,l?α,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{1}{x+2}$(x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=blnx+x-$\frac{1}{x}$(b∈R).
(1)若曲線y=f(x)在點(diǎn)(1,2)處的切線與直線x-y+3=0垂直,求實(shí)數(shù)b的值;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)b的取值范圍;
(3)已知g(x)=$\frac{1}{2}$x2+(t-1)x+$\frac{1}{x}$,t≤-$\frac{{3\sqrt{2}}}{2}$,h(x)=f(x)+g(x),當(dāng)b=1時(shí),h(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)3f(x)-f($\frac{1}{x}$)=$\frac{1}{x}$,求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知下列命題:
(1)“cosx<0”是“tanx<0”的充分不必要條件;
(2)命題“存在x∈Z,4x+1是奇數(shù)”的否定是“任意x∈Z,4x+1不是奇數(shù)”;
(3)已知a,b,c∈R,若ac2>bc2,則a>b.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=m-$\frac{2}{{2}^{x}+1}$,(m∈R).
(1)試判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(2)是否存在實(shí)數(shù)m使函數(shù)f(x)為奇函數(shù)?
(3)對(duì)于(2)中的函數(shù)f(x),若f(t+1)+f(t)≥0,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案