分析 (1)由等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d,即可得到所求通項(xiàng);
(2)由等比數(shù)列的通項(xiàng)公式可得bn=4-2n+3n-1,再由數(shù)列的求和方法:分組求和,運(yùn)用等差數(shù)列和等比數(shù)列的求和公式,計(jì)算即可得到所求.
解答 解:(1)由等差數(shù)列的通項(xiàng)公式可得,
an=a1+(n-1)d=2-2(n-1)=4-2n;
(2){bn-an}是首項(xiàng)為1,公比為3的等比數(shù)列,
可得bn-an=1•3n-1,即為bn=4-2n+3n-1;
前n項(xiàng)和Sn=(2+1)+(0+3)+…+(4-2n+3n-1)
=(2+0+…+4-2n)+(1+3+…+3n-1)
=$\frac{1}{2}$•(2+4-2n)n+$\frac{1-{3}^{n}}{1-3}$
=3n-n2+$\frac{{3}^{n}-1}{2}$.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 21 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | $\frac{3}{2}$ | C. | 3 | D. | $\frac{5}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com