17.已知函數(shù)f(x)=x4-4x3+10x2,則方程f(x)=27在[2,3]上的根的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 利用導(dǎo)數(shù)及二階導(dǎo)數(shù)依次判斷f′(x),f(x)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性判斷解的個(gè)數(shù).

解答 解:f′(x)=4x3-12x2+20x,f″(x)=12x2-24x+20=12(x-1)2+8>0,
∴f′(x)在[2,3]上單調(diào)遞增,∴f′(x)≥f′(2)=24>0,
∴f(x)在[2,3]上單調(diào)遞增,
∵f(2)=24,f(3)=63,
∴f(x)=27在[2,3]上有一個(gè)根.
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,根的個(gè)數(shù)與單調(diào)性的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在正三棱柱ABC-A1B1C1中,若$A{B_1}=\sqrt{3}B{B_1}$,則$<\overrightarrow{A{B_1}},\overrightarrow{B{C_1}}>$=(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=(x-1)ex的單調(diào)減區(qū)間為( 。
A.(-∞,0)B.(0,1)C.(1,4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,k).
(1)若($\overrightarrow{a}$+2$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),求k的值.
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.①α=2kπ+$\frac{π}{3}$(k∈Z),則tanα=$\sqrt{3}$
②函數(shù)f(x)=|2cosx-1|的最小正周期是π;
③在△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形;
④若a+b=0,則函數(shù)y=asinx-bcosx的圖象的一條對(duì)稱(chēng)軸方程為x=$\frac{π}{4}$.
其中是真命題的序號(hào)為( 。
A.1.3.4B.1.2.3C.2.3.4D.1.2 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列結(jié)論中正確的有(2)
(1)若α,β是第一象限角,且α<β,則sinα<sinβ;
(2)函數(shù)y=sin(πx-$\frac{π}{2}$)是偶函數(shù);
(3)函數(shù)y=sin(2x+$\frac{π}{6}$)的一個(gè)對(duì)稱(chēng)中心是($\frac{π}{6}$,0);
(4)函數(shù)y=sin(2x+$\frac{π}{3}$)在[0,$\frac{π}{6}$]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓x2+y2=4上一定點(diǎn)A(2,0),B(1,1)為圓內(nèi)一點(diǎn),P,Q為圓上的動(dòng)點(diǎn),求線段AP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若沿一個(gè)正方體三個(gè)面的對(duì)角線截得的幾何體如圖所示,則下列說(shuō)法正確的是( 。
A.正視圖與側(cè)視圖一樣B.正視圖與俯視圖一樣
C.側(cè)視圖與俯視圖一樣D.正視圖、側(cè)視圖、俯視圖都不一樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則m的最大值與最小值之和為(  )
A.12B.11C.10D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案