【題目】已知數(shù)列{an},{bn}滿足a1=1,且an , an+1是函數(shù)f(x)=x2﹣bnx+2n的兩個零點,則b10等于(
A.24
B.32
C.48
D.64

【答案】D
【解析】解:由已知, ,所以 ,
兩式相除得 =2
所以a1 , a3 , a5 , …成等比數(shù)列,a2 , a4 , a6 , …成等比數(shù)列.而a1=1,a2=2,
所以a10=2×24=32.a(chǎn)11=1×25=32,
又an+an+1=bn ,
所以b10=a10+a11=64
故選D
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的零點的相關(guān)知識,掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為: ,直線的參數(shù)方程是為參數(shù), ).

(1)求曲線的直角坐標方程;

(2)設(shè)直線與曲線交于兩點,且線段的中點為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,(其中是自然對數(shù)的底數(shù)).

(1) 使得不等式成立,試求實數(shù)的取值范圍.

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某正三棱柱的三視圖如圖所示,其中正(主)視圖是邊長為的正方形,該正三棱柱的表面積是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)有向量 =(1,7), =(5,1), =(2,1),點X為直線OP上的一個動點.
(1)當 取最小值時,求 的坐標;
(2)當點X滿足(1)的條件和結(jié)論時,求cos∠AXB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區(qū)域,則f(3)=;f(n)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文)已知矩形ABB1A1是圓柱體的軸截面,O、O1分別是下底面圓和上底面圓的圓心,母線長與底面圓的直徑長之比為2:1,且該圓柱體的體積為32π,如圖所示.

(1)求圓柱體的側(cè)面積S側(cè)的值;
(2)若C1是半圓弧 的中點,點C在半徑OA上,且OC= OA,異面直線CC1與BB1所成的角為θ,求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:

(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當平面與平面垂直時,求的長.

查看答案和解析>>

同步練習(xí)冊答案