【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為: ,直線的參數(shù)方程是為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線交于兩點(diǎn),且線段的中點(diǎn)為,求

【答案】(I) ;(II).

【解析】試題分析:(I)由極坐標(biāo)與直角坐標(biāo)互化的關(guān)系式 可將曲線極坐標(biāo)方程化為普通方程.(II)將直線的參數(shù)方程代入取曲線的普通方程中, 中點(diǎn),由的幾何意義知故得到關(guān)于的方程,求出傾斜角.

試題解析:

(I)曲線,即,

于是有,

化為直角坐標(biāo)方程為:

(II)方法1:

的中點(diǎn)為,有,所以

方法2:設(shè),則

,

,∴,由.

方法3: 設(shè),則由的中點(diǎn)得

,

,∴,知

,由.

方法4:依題意設(shè)直線,與聯(lián)立得,

,因?yàn)?/span> ,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某出租車公司響應(yīng)國(guó)家節(jié)能減排的號(hào)召,已陸續(xù)購(gòu)買了140輛純電動(dòng)汽車作為運(yùn)營(yíng)車輛,目前我國(guó)主流純電動(dòng)汽車按續(xù)航里程數(shù)單位:公里分為3類,即類:,類: 類:,該公司對(duì)這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

類型

已行駛總里程不超過10萬公里的車輛數(shù)

10

40

30

已行駛總里程超過10萬公里的車輛數(shù)

20

20

20

(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;

(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類車中抽取了輛車.

的值;

如果從這輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面平面,點(diǎn)的中點(diǎn),連接

(1)求證:平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解高中入學(xué)新生的身高情況,從高一年級(jí)學(xué)生中按分層抽樣共抽取了50名學(xué)生的身高數(shù)據(jù),分組統(tǒng)計(jì)后得到了這50名學(xué)生身高的頻數(shù)分布表:

(Ⅰ)在答題卡上作出這50名學(xué)生身高的頻率分布直方圖;

(Ⅱ)估計(jì)這50名學(xué)生身高的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅲ)現(xiàn)從身高在這6名學(xué)生中隨機(jī)抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)存在極小值點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和定直線的距離之比為,設(shè)動(dòng)點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)過點(diǎn)作斜率不為0的任意一條直線與曲線交于兩點(diǎn),試問在軸上是否存在一點(diǎn)(與點(diǎn)不重合),使得,若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑為,圓心在第一象限,且與直線軸都相切.

Ⅰ)求圓的方程.

Ⅱ)過的直線與圓相交所得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),若,求證:

(1)方程有實(shí)根.

(2)若﹣2<<﹣1且設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,則≤|x1﹣x2|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=1,且an , an+1是函數(shù)f(x)=x2﹣bnx+2n的兩個(gè)零點(diǎn),則b10等于(
A.24
B.32
C.48
D.64

查看答案和解析>>

同步練習(xí)冊(cè)答案