若sinα≤0,則α的集合是
 
考點:三角函數(shù)線
專題:計算題,三角函數(shù)的求值
分析:利用正弦函數(shù)的性質(zhì),即可得出結(jié)論.
解答: 解:∵sinα≤0,
∴α∈[2kπ-π,2kπ](k∈Z).
故答案為:[2kπ-π,2kπ](k∈Z).
點評:本題考查角的表示方法,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
的始點為A(-2,4),終點為B(2,1),求:
(1)向量
a
的模;
(2)與向量
a
平行的單位向量的坐標(biāo);
(3)與向量
a
垂直的單位向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點不共線,對平面ABC外的任一點O,下列條件中能確定定點M與點A、B、C一定共面的是(  )
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
2
OA
+
1
3
OB
+
1
6
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an+(-1)n;
(1)求a1的值.
(2)令
an
2n
=bn,求證:數(shù)列{bn-bn-1}(n≥2)是等比數(shù)列;
(3)求證:對任意正整數(shù)m>4,有
1
a4
+
1
a5
+
1
a6
+…+
1
am
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a、b、c、d四名運(yùn)動員爭奪某次賽事的第1、2、3、4名,比賽規(guī)則為:通過抽簽,將4人分為甲、乙兩個小組,每組2人,第一輪比賽(半決賽):兩組各進(jìn)行一場比賽決出各組的勝者和負(fù)者;第二輪比賽(決賽):兩組中的勝者進(jìn)行一場比賽爭奪第1、2名,兩組中的負(fù)者進(jìn)行一場比賽爭奪第3、4名,死命選手以往交手的勝負(fù)情況如表所示:
  a c d
 a -a20勝10負(fù) a13勝利26負(fù) a18勝18負(fù) 
 b b10勝20負(fù)-b28勝14負(fù)  b19勝19負(fù)
 c c26勝13負(fù) c14勝28負(fù)- c17勝17負(fù)
 d  d18勝18負(fù)  d19勝19負(fù)d17勝17負(fù) -
若抽簽結(jié)果為甲組:a、d,乙組:b、c,每場比賽中,以雙方以往交手各自獲勝的概率作為其獲勝的概率.
(1)求a獲得第1名的概率;
(2)求a的名次ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,已知側(cè)視圖是一個等邊三角形,根據(jù)圖中尺寸(單位:cm),這個幾何體的體積為
 
cm3;表面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
m
+
y2
n
=1的離心率為2,且一個焦點與拋物線x2=8y的焦點相同,則此雙曲線的方程為(  )
A、
x2
3
-y2=1
B、
x2
4
-
y2
12
=1
C、y2-
x2
3
=1
D、
y2
12
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2為左右焦點,|F1F2|=2,橢圓上一動點P,左頂點為A,且cos∠F1PF2的最小值為
1
2

(1)橢圓C的方程;
(2)直線l:y=kx+m與橢圓C相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN,垂足為H,且
AH
2
=
MH
HN
,直線l是否過定點,如果過定點求出定點坐標(biāo),不過說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2+
1
x2
-2)3展開式中的常數(shù)項為( 。
A、-8B、-12
C、-20D、20

查看答案和解析>>

同步練習(xí)冊答案