【題目】據(jù)氣象部門預報,在距離碼頭A南偏東45°方向400千米B處的臺風中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風中心為圓心,距臺風中心100 千米以內(nèi)的地區(qū)都將受到臺風影響.據(jù)以上預報估計,從現(xiàn)在起多長時間后,碼頭A將受到臺風的影響?影響時間大約有多長?
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎上每增加元,對應的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對應數(shù)據(jù):
據(jù)此計算出的回歸方程為.
(i)求參數(shù)的估計值;
(ii)若把回歸方程當作與的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1 , F2分別為雙曲線 ﹣ =1(a>0,b>0)的左右焦點,如果雙曲線上存在一點P,使得F2關(guān)于直線PF1的對稱點恰在y軸上,則該雙曲線的離心率e的取值范圍為( )
A.e>
B.1<e<
C.e>
D.1<e<
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;
(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
注:年利潤=年銷售收入-年總成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線C1: ﹣ =1過點P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個結(jié)論:
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角為60°;
其中正確結(jié)論是(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
寫出曲線的極坐標的方程以及曲線的直角坐標方程;
若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com