【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖),雙曲線C1: ﹣ =1過點P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.
【答案】
(1)解:設(shè)切點P(x0,y0),(x0>0,y0>0),則切線的斜率為 ,
可得切線的方程為 ,化為x0x+y0y=4.
令x=0,可得 ;令y=0,可得 .
∴切線與x軸正半軸,y軸正半軸圍成一個三角形的面積S= = .
∵4= ,當(dāng)且僅當(dāng) 時取等號.
∴ .此時P .
由題意可得 , ,解得a2=1,b2=2.
故雙曲線C1的方程為 .
(2)解:由(1)可知雙曲線C1的焦點(± ,0),即為橢圓C2的焦點.
可設(shè)橢圓C2的方程為 (b1>0).
把P 代入可得 ,解得 =3,
因此橢圓C2的方程為 .
由題意可設(shè)直線l的方程為x=my+ ,A(x1,y1),B(x2,y2),
聯(lián)立 ,化為 ,
∴ , .
∴x1+x2= = ,
x1x2= = .
, ,
∵ ,∴ ,
∴ + ,
∴ ,解得m= 或m= ,
因此直線l的方程為: 或
【解析】(1)設(shè)切點P(x0 , y0),(x0>0,y0>0),利用相互垂直的直線斜率之間的關(guān)系可得切線的斜率和切線的方程,即可得出三角形的面積,利用基本不等式的性質(zhì)可得點P的坐標(biāo),再利用雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)即可得出;(2)由(1)可得橢圓C2的焦點.可設(shè)橢圓C2的方程為 (b1>0).把P的坐標(biāo)代入即可得出方程.由題意可設(shè)直線l的方程為x=my+ ,A(x1 , y1),B(x2 , y2),與橢圓的方程聯(lián)立即可得出根與系數(shù)的關(guān)系,再利用向量垂直與數(shù)量積的關(guān)系即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0≤φ≤ )的圖象與y軸交于點(0,1).
(1)求φ的值.
(2)設(shè)P是圖象上的最高點,M、N是圖象與x軸的交點,求tan∠MPN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2 .
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2 ,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)氣象部門預(yù)報,在距離碼頭A南偏東45°方向400千米B處的臺風(fēng)中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風(fēng)中心為圓心,距臺風(fēng)中心100 千米以內(nèi)的地區(qū)都將受到臺風(fēng)影響.據(jù)以上預(yù)報估計,從現(xiàn)在起多長時間后,碼頭A將受到臺風(fēng)的影響?影響時間大約有多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓滿足:(1)截軸所得弦長為2;(2)被軸分成兩段圓弧,其弧長的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),數(shù)學(xué)成績分組及樣本頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合計 | ③ | ④ |
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué),已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4 ,M、N分別是AB、CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB、CD可能相交于點M;
②弦AB、CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組 所表示的平面區(qū)域為Dn , 記Dn內(nèi)的格點(格點即橫坐標(biāo)和縱坐標(biāo)皆為整數(shù)的點)的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記 ,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com