設(shè)F1、F2為橢圓的左右焦點(diǎn),過(guò)橢圓的中心任作一直線與橢圓交于PQ兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),的值等于   
【答案】分析:欲求四邊形PF1QF2面積最大時(shí),的值,根據(jù)圖形的幾何性質(zhì)得到該四邊形是平行四邊形.
此四邊形可以成兩個(gè)全等三角形的組合圖形,,當(dāng)θ取最大值時(shí)四邊形PF1QF2面積最大,易得當(dāng)點(diǎn)P、Q分別在上下頂點(diǎn)時(shí)符合要求.于是cosθ,即可得到結(jié)果.
解答:解:因?yàn)樗倪呅问瞧叫兴倪呅危?br />所以,四邊形可以成兩個(gè)全等三角形的組合圖形,則;
當(dāng)θ取最大值時(shí)四邊形PF1QF2面積最大,sinθ=
即當(dāng)點(diǎn)P、Q分別在上下頂點(diǎn)時(shí),θ取最大值,四邊形PF1QF2面積最大,
令橢圓的實(shí)半軸為a=5,虛半軸為b=4,焦半徑為c
此時(shí),cosα=a2=25×=7.
故答案為7.
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,同時(shí)還考查與橢圓相關(guān)的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2為橢圓的左右焦點(diǎn),過(guò)橢圓
x2
25
+
y2
16
=1
的中心任作一直線與橢圓交于PQ兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1
 (a>b>0)的離心率e=
6
3
,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程;
(2)設(shè)F1、F2為橢圓的左、右焦點(diǎn),過(guò)F2作直線交橢圓于P、Q兩點(diǎn),求△PQF1的內(nèi)切圓半徑r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P滿足∠F1PF2=120°,則橢圓的離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),|F1F2|=8,P為橢圓上的一點(diǎn),|PF1|+|PF2|=10,PF1⊥PF2,則點(diǎn)P的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•薊縣一模)設(shè)F1、F2為橢圓的兩個(gè)焦點(diǎn),A為橢圓上的點(diǎn),且
AF2
F1F2
=0
,cos∠AF1F2=
2
2
3
,則橢圓的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案