3.已知函數(shù)f(x)滿足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上單調(diào)遞減,則方程f(x)=$\frac{1}{2}$在區(qū)間[-2014,2014]內(nèi)根的個(gè)數(shù)為1343.

分析 可令y=1,f(x)=f(x+1)+f(x-1),兩次將x換為x+1,可得f(x)的周期為3,由題意可得方程的根的個(gè)數(shù).

解答 解:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,
令y=1,可得2f(x)f(1)=f(x+1)+f(x-1),
即為f(x)=f(x+1)+f(x-1),
將x換為x+1,可得f(x+1)=f(x+2)+f(x),
即有f(x+2)=f(x-1),
將x換為x+1,可得f(x+3)=f(x),
則函數(shù)f(x)以3為最小正周期的函數(shù),
由f(1)=$\frac{1}{2}$,且f(x)在[0,3]上單調(diào)遞減,
可得方程f(x)=$\frac{1}{2}$在[0,2014]之間有672個(gè)根,
在[-2014,0]之間有671個(gè)根,
則方程f(x)=$\frac{1}{2}$在區(qū)間[-2014,2014]內(nèi)根的個(gè)數(shù)為672+671=1343個(gè)根.
故答案為:1343.

點(diǎn)評(píng) 本題考查抽象函數(shù)的性質(zhì)和運(yùn)用,主要是周期性的應(yīng)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某幾何體的三視圖如圖所示,其中正視圖是邊長為2的正方形,俯視圖是正三角形,則這個(gè)幾何體的體積是( 。
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$\frac{2}{3}\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一輛汽車在某段路程中的行駛速率與時(shí)間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說明所求面積的實(shí)際含義;
(2)假設(shè)這輛汽車在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車在行駛這段路程時(shí)里程表讀數(shù)s(km)與時(shí)間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,直線l是曲線y=f(x)在x=3處的切線,f'(x)表示函數(shù)f(x)的導(dǎo)函數(shù),則f(3)+f'(3)的值為$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影,則|OB|等于(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且對(duì)任意的a、b∈[-1,1],當(dāng)a+b≠0時(shí),都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求證:$\frac{f(a)-f(b)}{a-b}$>0,并據(jù)此說明函數(shù)f(x)的單調(diào)性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若對(duì)于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求負(fù)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知△ABC的外接圓的圓心為O,AB=2,AC=3,BC=4,則$\overrightarrow{AO}$•$\overrightarrow{BC}$=( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,4Sn=anan+1+1(n∈N*).
(1)求a15的值;
(2)求證:數(shù)列{an}是等差數(shù)列;
(3)若am-12,am,am+k+18成等差數(shù)列,其中m∈N*,k∈N*,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合$M=\left\{{y|y={x^2}-2\;,\;\;x∈R}\right\}\;,\;\;N=\left\{{x|y=\sqrt{x+1}\;,\;\;x∈R}\right\}$,則M∩N={z|z≥-1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案