如圖,函數(shù)f(x)=x+的定義域?yàn)?0,+∞).設(shè)點(diǎn)P是函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M,N.
(1)證明:|PM|·|PN|為定值;
(2)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形的頂點(diǎn)為原點(diǎn),邊所在直線的方程為,頂點(diǎn)的縱坐標(biāo)為.
(1)求邊所在直線的方程;
(2)求矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動(dòng)弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過(guò)定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動(dòng)弦,滿足直線與圓相切,求半徑的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分16分)如圖:為保護(hù)河上古橋,規(guī)劃建一座新橋,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求,新橋與河岸垂直;保護(hù)區(qū)的邊界為圓心在線段上并與相切的圓,且古橋兩端和到該圓上任一點(diǎn)的距離均不少于80,經(jīng)測(cè)量,點(diǎn)位于點(diǎn)正北方向60處,點(diǎn)位于點(diǎn)正東方向170處,(為河岸),.
(1)求新橋的長(zhǎng);
(2)當(dāng)多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:()過(guò)點(diǎn)(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.求直線是否恒過(guò)定點(diǎn),若果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)點(diǎn)P(1,4)引一條直線,使它在兩條坐標(biāo)軸上的截距為正值,且它們的和最小,求這條直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知兩定點(diǎn),則該直線為“A型直線”。給出下列直線,其中是“A型直線”的是_____________________
① ② ③ ④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com