4.函數(shù)f(x)=-4x3+3x+2(x∈[0,1])的最大值為( 。
A.1B.2C.3D.4

分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)為0得到導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對(duì)區(qū)間(0,1)分段,利用導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號(hào)可得原函數(shù)的單調(diào)性,從而求得函數(shù)在閉區(qū)間上的最值.

解答 解:由f(x)=-4x3+3x+2,得f′(x)=-12x2+3,
由f′(x)=-12x2+3=0,得x=$±\frac{1}{2}$.
∴當(dāng)x∈(0,$\frac{1}{2}$)時(shí),f′(x)>0,當(dāng)x∈($\frac{1}{2}$,+∞)時(shí),f′(x)<0,
f(x)在(0,$\frac{1}{2}$)上為增函數(shù),在($\frac{1}{2}$,+∞)上為減函數(shù).
∴f(x)的最大值為f($\frac{1}{2}$)=$-4×(\frac{1}{2})^{3}+3×\frac{1}{2}+2=3$.
故選:C.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,考查導(dǎo)函數(shù)的符號(hào)與原函數(shù)單調(diào)性間的關(guān)系,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知A(x1,y1),B(x2,y2)是函數(shù)$f(x)=2sin(wx+φ)(w>0,-\frac{π}{2}<φ<0)$的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn)$P(1,-\sqrt{3})$,若|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的遞增區(qū)間;
(3)當(dāng)$x∈[0,\frac{π}{6}]$時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.祖暅(公元前5-6世紀(jì)),祖沖之之子,是我國(guó)齊梁時(shí)代的數(shù)學(xué)家.他提出了一條原理:“冪勢(shì)既同,則積不容異.”這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.該原理在西方直到十七世紀(jì)才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體.如圖將底面直徑皆為2b,高皆為a的橢半球體及已被挖去了圓錐體的圓柱體放置于同一平面β上.以平行于平面β的平面于距平面β任意高d處可橫截得到S及S環(huán)兩截面,可以證明S=S環(huán)知總成立.據(jù)此,短軸長(zhǎng)為4cm,長(zhǎng)軸為6cm的橢球體的體積是16πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一個(gè)三位自然數(shù)百位,十位,個(gè)位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)a>b,b<c時(shí)稱(chēng)為“凹數(shù)”(如213),若a,b,c∈{1,2,3,4},且a,b,c互不相同,則這個(gè)三位數(shù)為“凹數(shù)”的有( 。﹤(gè).
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)$y=3\sqrt{2x-1}+4\sqrt{5-2x}$的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個(gè)不共線的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點(diǎn)共線,求k的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.半徑為3cm的圓中,$\frac{π}{7}$的圓心角所對(duì)的弧長(zhǎng)為(  )
A.$\frac{3π}{7}$cmB.$\frac{π}{21}$cmC.$\frac{3}{7}$cmD.$\frac{9π}{7}$cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

經(jīng)過(guò)點(diǎn)(,2),傾斜角為60°的直線方程是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年吉林省高一下學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知直線、, 平面α, , ∥α, 那么與平面α的關(guān)系是( ).

A.∥α

B.α

C.∥α或α

D.與α相交

查看答案和解析>>

同步練習(xí)冊(cè)答案