9.已知函數(shù)$f(t)=\sqrt{\frac{1-t}{1+t}}$,F(xiàn)(x)=sinx•f(cosx)+cosx•f(sinx)且$π<x<\frac{3π}{2}$.
(Ⅰ)將函數(shù)F(x)化簡(jiǎn)成Asin(ωx+φ)+B(其中A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函數(shù)F(x)的值域.

分析 (Ⅰ)將f(sinx),f(cosx)代入f(t),分子分母分別乘以(1-sinx),(1-cosx)去掉根號(hào),再由x的范圍去絕對(duì)值可得答案.
(Ⅱ)先由x的范圍求出x+$\frac{π}{4}$的范圍,再由三角函數(shù)的單調(diào)性可得答案.

解答 解:(Ⅰ)由$π<x<\frac{3π}{2}$知sinx<0,cosx<0,
∴$F(x)=sinx\sqrt{\frac{1-cosx}{1+cosx}}+cosx\sqrt{\frac{1-sinx}{1+sinx}}$=$sinx•\frac{1-cosx}{|sinx|}+cosx•\frac{1-sinx}{|cosx|}$=sinx+cosx-2=$\sqrt{2}sin({x+\frac{π}{4}})-2$;
(Ⅱ)由$π<x<\frac{3π}{2}$得$\frac{5π}{4}<x+\frac{π}{4}<\frac{7π}{4}$
∴$-1≤sin({x+\frac{π}{4}})<-\frac{{\sqrt{2}}}{2}$
∴$-2-\sqrt{2}≤\sqrt{2}sin({x+\frac{π}{4}})-2<-3$
∴F(x)的值域是$[{-2-\sqrt{2},-3})$.

點(diǎn)評(píng) 本小題主要考查函數(shù)的定義域、值域和三角函數(shù)的性質(zhì)等基本知識(shí),考查三角恒等變換、代數(shù)式的化簡(jiǎn)變形和運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.命題:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.我國(guó)古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計(jì)算方法.它是由兩個(gè)圓柱分別從縱橫兩個(gè)方向嵌入一個(gè)正方體時(shí)兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線x=1的極坐標(biāo)方程是( 。
A.ρ=1B.ρ=cosθC.ρcosθ=1D.$ρ=\frac{1}{cosθ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,a=2,b=4,C=60°.
(1)求邊c及面積S.
(2)求sinA+cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知sinθ+cosθ=$\frac{3}{4}$,其中θ是三角形的一個(gè)內(nèi)角,則sinθ-cosθ的值為$\frac{\sqrt{23}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)y=3sin($\frac{π}{4}$-2x),則其單調(diào)遞增區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.定積分${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a>1,函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t),當(dāng)x∈(-1,1),t∈[4,6]時(shí),存在x,t使得g(x)≤f(x)+4成立,則a的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案