9.某城區(qū)按以下規(guī)定收取水費(fèi):若每月用水不超過(guò)20m3,則每立方米水費(fèi)按2元收取;若超過(guò)20m3,則超過(guò)的部分按每立方米3元收取,如果某戶居民在某月所交水費(fèi)的平均價(jià)為每立方米2.20元,則這戶居民這月共用水(  )
A.46m3B.44m3C.26m3D.25m3

分析 設(shè)他這個(gè)月共用了x立方米的水,依據(jù)錢數(shù)不變可列方程,依據(jù)等式的性質(zhì)即可求解.

解答 解:設(shè)他這個(gè)月共用了x立方米的水
20×2+(x-20)×3=2.2x
40+3x-60=2.2x
0.8x=20
x=25.
他這個(gè)月共用了25立方米的水.
故選:D.

點(diǎn)評(píng) 解答本題用方程比較容易理解,只要依據(jù)數(shù)量間的等量關(guān)系,列出方程,再根據(jù)等式的性質(zhì)即可求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}x≤2\\ y≥-1\\ y≤x\end{array}\right.$表示的平面區(qū)域的面積是$\frac{9}{2}$,z=2x+y的最小值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.等比數(shù)列{an}滿足a1+2a2=1,a${\;}_{3}^{2}$=a5-a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓的焦點(diǎn)是F1(-2,0),F(xiàn)2(2,0),點(diǎn)P為橢圓上一點(diǎn),且|PF2|,|F1F2|,|PF1|成等差數(shù)列,求此橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤1}\end{array}\right.$,則z=$\frac{y}{x-2}$的最小值為( 。
A.-$\frac{1}{4}$B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,若sinA、sinB、sinC成公比為q的等比數(shù)列,則q的取值范圍為($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題p1:函數(shù)y=($\frac{1}{2}$)x-($\frac{1}{2}$)-x在R上為減函數(shù),p2:函數(shù)y=($\frac{1}{2}$)x+($\frac{1}{2}$)-x在R上為增函數(shù),則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命題是( 。
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象如圖所示,f(x0)=-f(0),則正確的選項(xiàng)是( 。
A.φ=$\frac{π}{6}$,x0=1B.φ=$\frac{π}{6}$,x0=$\frac{4}{3}$C.φ=$\frac{π}{3}$,x0=1D.φ=$\frac{π}{3}$,x0=$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}滿足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=${log}_{\sqrt{2}}$an,數(shù)列{anbn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案