1.已知命題p1:函數(shù)y=($\frac{1}{2}$)x-($\frac{1}{2}$)-x在R上為減函數(shù),p2:函數(shù)y=($\frac{1}{2}$)x+($\frac{1}{2}$)-x在R上為增函數(shù),則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命題是( 。
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

分析 利用函數(shù)y=$(\frac{1}{2})^{x}$在R上為減函數(shù),再利用復合函數(shù)的單調性即可判斷出命題p1,p2的真假,進而得出結論.

解答 解:命題p1:由于函數(shù)y=$(\frac{1}{2})^{x}$在R上為減函數(shù),因此函數(shù)y=($\frac{1}{2}$)x-($\frac{1}{2}$)-x在R上為減函數(shù),是真命題;
p2:令t=$(\frac{1}{2})^{x}$>0,y=t+$\frac{1}{t}$在(0,1)上單調遞減,在(1,+∞)上單調遞增.
可得:函數(shù)y=($\frac{1}{2}$)x+($\frac{1}{2}$)-x在(-∞,0)上為增函數(shù),在(0,+∞)上為減函數(shù),因此是假命題.
則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命題是q1,q4
故選:C.

點評 本題考查了函數(shù)的單調性、復合命題真假的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的單調遞增區(qū)間是( 。
A.[-$\frac{π}{3}$,$\frac{5π}{3}$]B.[-2π,-$\frac{π}{3}$]C.[$\frac{5π}{3}$,2π]D.[-2π,-$\frac{π}{3}$]和[$\frac{5π}{3}$,2π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.2016年1月1日,我國實施“全面二孩”政策,中國社會科學院在某地(已婚男性約15000人)隨機抽取了150名已婚男性,其中愿意生育二孩的有100名,經統(tǒng)計,該100名男性的年齡情況對應的頻率分布直方圖如下;
(1)求這100名已婚男性的年齡平均值$\overline{x}$和樣本方差s2(同組數(shù)據(jù)用區(qū)間的中點值代替,結果精確到個位);
(2)(Ⅰ)試估計該地愿意生育二孩的已婚男性人數(shù);
     (Ⅱ)由直方圖可以認為,愿意生育二孩的已婚男性的年齡ξ服從正態(tài)分布N(μ,δ2),其中μ近似樣本的平均值$\overline{x}$,δ2近似為樣本的方差s2,試問:該地愿意生育二孩且處于較佳的生育年齡ξ(ξ∈(26,31))的總人數(shù)約為多少?(結果精確到個位)
附:若ξ~N(μ,δ2),則P(μ-δ<ξ<μ+δ)=0.6826,P(μ-2δ<ξ<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某城區(qū)按以下規(guī)定收取水費:若每月用水不超過20m3,則每立方米水費按2元收;若超過20m3,則超過的部分按每立方米3元收取,如果某戶居民在某月所交水費的平均價為每立方米2.20元,則這戶居民這月共用水( 。
A.46m3B.44m3C.26m3D.25m3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面四邊形ABCD內接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,E是PC的中點,∠DAC=∠AOB.
(I)求證:BE∥平面PAD;
(2)求證:平面BOE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}中a1+a2+a3+…+an=2n-1,求a12+a22+a32+…+an2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的左、右焦點分別為F1、F2,過F2的直線與該雙曲線的右支交于A、B兩點,若△ABF1的周長為30,則點F1與以AB為直徑的圓的位置關系為( 。
A.在圓外B.在圓上C.在圓內D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.實數(shù)x,y滿足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,則$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍是[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC不是直角三角形,求證:tanA+tanB+tanC=tanAtanBtanC.

查看答案和解析>>

同步練習冊答案