18.已知函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象如圖所示,f(x0)=-f(0),則正確的選項(xiàng)是( 。
A.φ=$\frac{π}{6}$,x0=1B.φ=$\frac{π}{6}$,x0=$\frac{4}{3}$C.φ=$\frac{π}{3}$,x0=1D.φ=$\frac{π}{3}$,x0=$\frac{2}{3}$

分析 根據(jù)f(0)=$\frac{\sqrt{3}}{2}$解出φ,利用f(x0)=-f(0)=-$\frac{\sqrt{3}}{2}$解出x0

解答 解:由函數(shù)圖象可知f(0)=$\frac{\sqrt{3}}{2}$,即cosφ=$\frac{\sqrt{3}}{2}$,
∵0<φ<$\frac{π}{2}$,∴φ=$\frac{π}{6}$.
∵f(x0)=-f(0)=-$\frac{\sqrt{3}}{2}$,
∴cos($π{x}_{0}+\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$.
∴$π{x}_{0}+\frac{π}{6}$=$\frac{7π}{6}$,解得x0=1.
故選:A.

點(diǎn)評(píng) 本題考查了余弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2、|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}•\overrightarrow{OB}$=0,點(diǎn)P滿足$\overrightarrow{OP}=\frac{m}{{\sqrt{2{m^2}+2{n^2}}}}\overrightarrow{OA}+\frac{{\sqrt{2}n}}{{\sqrt{{m^2}+{n^2}}}}\overrightarrow{OB}$,其中m≥0,n≥0,則點(diǎn)P所表示的軌跡長度為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{π}{2}$D.$\frac{{\sqrt{2}π}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某城區(qū)按以下規(guī)定收取水費(fèi):若每月用水不超過20m3,則每立方米水費(fèi)按2元收取;若超過20m3,則超過的部分按每立方米3元收取,如果某戶居民在某月所交水費(fèi)的平均價(jià)為每立方米2.20元,則這戶居民這月共用水( 。
A.46m3B.44m3C.26m3D.25m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中a1+a2+a3+…+an=2n-1,求a12+a22+a32+…+an2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的左、右焦點(diǎn)分別為F1、F2,過F2的直線與該雙曲線的右支交于A、B兩點(diǎn),若△ABF1的周長為30,則點(diǎn)F1與以AB為直徑的圓的位置關(guān)系為(  )
A.在圓外B.在圓上C.在圓內(nèi)D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實(shí)數(shù)x,y,m,n滿足x2+y2=3,m2+n2=1,則mx+ny的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,則$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍是[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前項(xiàng)和為Sn,S4=20,S6=42
(1)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)的和Sn
(2)若令bn=$\frac{1}{{a}_{n}^{2}-1}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且其圖象過點(diǎn)($\frac{5π}{12}$,0),則f(x)的圖象的一條對(duì)稱軸方程為(  )
A.x=$\frac{π}{3}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{6}$D.x=-$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案