已知log
3
4
(x+1)
log
4
3
(x-3)
,則x=
 
考點(diǎn):對數(shù)值大小的比較
專題:計算題
分析:log
3
4
(x+1)
log
3
4
1
x-3
,可得
x+1>0
x-3>0
x+1<
1
x-3
從而可求得3<x<1+
5
解答: 解∵log
3
4
(x+1)
log
4
3
(x-3)
,
log
3
4
(x+1)
log
3
4
1
x-3

故有 
x+1>0
x-3>0
x+1<
1
x-3
x>3
(x+1)(x-3)<1
x>3
x2-2x-4<0

∴3<x<1+
5
,
故不等式的解集為{x|3<x<1+
5
}.
故答案為:{x|3<x<1+
5
}
點(diǎn)評:本題主要考查了對數(shù)值大小的比較,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a6-a4=216,a3-a1=8,Sn=13,求公比q,a1及n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,且acosB=(
2
c-b)cosA.
(1)求∠A的大;   
(2)若a=
10
,cosB=
2
5
5
,D為AC的中點(diǎn),求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e
是任一向量,
a
=-2
e
,
b
=5
e
,用
a
表示
b
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α、β和直線m,l,則下列命題中正確的是( 。
A、若α⊥β,α∩β=m,l⊥m,則l⊥β
B、若α∩β=m,l?α,l⊥m,則l⊥β
C、若α⊥β,l?α,則l⊥β
D、若α⊥β,α∩β=m,l?α,l⊥m,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥面ABC,AA1=
2
A1C=
2
CA=
2
AB,AB⊥AC,D為AA1中點(diǎn)
(1)求證:CD⊥面ABB1A1
(2)在側(cè)棱BB1上確定一點(diǎn)E,使得二面角E-A1C1-A的平面角的余弦值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)與圓C2:x2+y2=a2+b2的一個交點(diǎn),且2∠PF1F2=∠PF2F1,其中F1,F(xiàn)2分別為雙曲線C1的左右焦點(diǎn),則雙曲線C1的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若函數(shù)y=log2(ax2+2x+1)的定義域?yàn)镽,則a的范圍為
 

(2)若函數(shù)y=log2(ax2+2x+1)的值域?yàn)镽,則a的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若運(yùn)行如圖所示的程序,則輸出S的值是
 

 

查看答案和解析>>

同步練習(xí)冊答案