【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,BC//A,為正三角形,M為PD中點(diǎn).
(1)證明:CM//平面PAB;
(2)若二面角P-AB-C的余弦值為,求直線AD與平面PBD所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)題意,取的中點(diǎn)為,連接,,利用中點(diǎn)可得平面平面,進(jìn)而可得結(jié)論;
(2)根據(jù)題意,取的中點(diǎn),連接,,,計(jì)算可得,進(jìn)而可得平面,建立坐標(biāo)系,利用空間向量計(jì)算即可.
(1)證明:取的中點(diǎn)為,連接,,如圖:
由題意,為直角梯形,,,為中點(diǎn),
∴,,
又,,
∴平面平面,而平面,平面,
故平面.
(2)由題意,取的中點(diǎn),連接,,,如圖:
因為等腰直角三角形,為正三角形,則,,即平面,即即二面角的平面角為,則,又,則,,由余弦定理可得,則,即,而,所以,平面,由為直角梯形,
所以,以分別為軸建立空間直角坐標(biāo)系,則,,,,則,,
設(shè)平面的一個(gè)法向量為,
由,即,取,所以,
所以,平面的一個(gè)法向量為,
所以,
即直線與平面所成的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等差數(shù)列,且,
(Ⅰ)求數(shù)列的通項(xiàng),及前項(xiàng)和
(Ⅱ)請你在數(shù)列的前4項(xiàng)中選出三項(xiàng),組成公比的絕對值小于1的等比數(shù)列的前3項(xiàng),并記數(shù)列的前n項(xiàng)和為.若對任意正整數(shù),不等式恒成立,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點(diǎn)1,求的值;
(2)若存在兩個(gè)不同的零點(diǎn),求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.
(1)求拋物線C的方程;
(2)過圓心M作x軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若存在,且當(dāng)時(shí),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級為了解學(xué)生在家參加線上教學(xué)的學(xué)習(xí)情況,對高三年級進(jìn)行了網(wǎng)上數(shù)學(xué)測試,他們的成績在80分到150分之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖:
若成績在區(qū)左側(cè),認(rèn)為該學(xué)生屬于“網(wǎng)課潛能生”,成績在區(qū)間之間,認(rèn)為該學(xué)生屬于“網(wǎng)課中等生”,成績在區(qū)間右側(cè),認(rèn)為該學(xué)生屬于“網(wǎng)課優(yōu)等生”.
(1)若小明的測試成績?yōu)?/span>100分,請判斷小明是否屬于“網(wǎng)課潛能生”,并說明理由:(參考數(shù)據(jù):計(jì)算得)
(2)該校利用分層抽樣的方法從樣本的,兩組中抽出6人,進(jìn)行教學(xué)反饋,并從這6人中再抽取2人,贈(zèng)送一份學(xué)習(xí)資料,求獲贈(zèng)學(xué)習(xí)資料的2人中恰有1人成績超過90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到直線的距離為,過點(diǎn)的直線與交于、兩點(diǎn).
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為,直線的斜率為,若,且與的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))
(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com