【題目】某學校數(shù)學建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導定律得到熱傳導量滿足關(guān)系式:,其中玻璃的熱傳導系數(shù)焦耳/(厘米度),不流通、干燥空氣的熱傳導系數(shù)焦耳/(厘米度), 為室內(nèi)外溫度差.值越小,保溫效果越好.現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:

型號

每層玻璃厚度

(單位:厘米)

玻璃間夾空氣層厚度

(單位:厘米)

A

B

C

D

則保溫效果最好的雙層玻璃的型號是________型.

【答案】

【解析】

分別計算4種型號的雙層玻璃窗戶的值,根據(jù)值越小,保溫效果越好.即可作出判斷.

A型雙層玻璃窗戶:,

B型雙層玻璃窗戶:,

C型雙層玻璃窗戶:

D 型雙層玻璃窗戶:,

根據(jù),且值越小,保溫效果越好.

故答案為:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列A: , ,… ().如果對小于()的每個正整數(shù)都有 ,則稱是數(shù)列A的一個“G時刻”.是數(shù)列A的所有“G時刻組成的集合.

(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個數(shù)不小于 -.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱底面直角梯形,,是棱上一點,,,,,.

(1)求異面直線所成的角;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為貫徹執(zhí)行黨中央不忘初心,牢記使命主題教育活動,增強企業(yè)的凝聚力和競爭力。某重裝企業(yè)的裝配分廠舉行裝配工人技術(shù)大比武,根據(jù)以往技術(shù)資料統(tǒng)計,某工人裝配第n件工件所用的時間(單位:分鐘)大致服從的關(guān)系為kM為常數(shù)).已知該工人裝配第9件工件用時20分鐘,裝配第M件工件用時12分鐘,那么可大致推出該工人裝配第4件工件所用時間是(

A.40分鐘B.35分鐘C.30分鐘D.25分鐘

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校組織了垃圾分類知識競賽活動.設(shè)置了四個箱子,分別寫有廚余垃圾有害垃圾、可回收物、其它垃圾;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷,將每張卡片放入對應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有廢電池的卡片放入寫有有害垃圾的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照,,分組,繪成頻率分布直方圖如圖:

(1)分別求出所抽取的人中得分落在組內(nèi)的人數(shù);

(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學期望;

(3) 如果某選手將抽到的20張卡片逐一隨機放入四個箱子,能否認為該選手不會得到100分?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了了解年研發(fā)資金投人量(單位:億元)對年銷售額(單位:億元)的影響.對公司近年的年研發(fā)資金投入量和年銷售額的數(shù)據(jù),進行了對比分析,建立了兩個函數(shù)模型:①,②,其中、、均為常數(shù),為自然對數(shù)的底數(shù).并得到一些統(tǒng)計量的值.,,經(jīng)計算得如下數(shù)據(jù):

1)請從相關(guān)系數(shù)的角度,分析哪一個模型擬合程度更好?

2)()根據(jù)(1)的選擇及表中數(shù)據(jù),建立關(guān)于的回歸方程;

)若下一年銷售額需達到億元,預測下一年的研發(fā)資金投入量是多少億元?

附:①相關(guān)系數(shù),

回歸直線中公式分別為:,;

②參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸是短軸的兩倍,以短軸一個頂點和長軸一個頂點為端點的線段作直徑的圓的周長等于,直線l與橢圓C交于兩點.

1)求橢圓C的方程;

2)過點O作直線l的垂線,垂足為D.,求動點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),如果存在區(qū)間,其中,同時滿足:

內(nèi)是單調(diào)函數(shù):②當定義域為時,的值域為,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)若函數(shù))是區(qū)間上的“保值函數(shù)”,求的取值范圍;

(3)對(2)中函數(shù),若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案