11.設(shè)集合A={x|-1≤x≤3},B={x|x2-6x+8<0},則A∩B等于( 。
A.{x|-1≤x<4}B.{x|2<x<3}C.{x|2<x≤3}D.{x|-1<x<4}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:∵A={x|-1≤x≤3},B={x|x2-6x+8<0}={x|2<x<4},
∴A∩B={x|2<x≤3},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為2$\sqrt{5}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4y的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若$\overrightarrow{MA}$-λ1$\overrightarrow{AF}$=$\overrightarrow{0}$,$\overrightarrow{MB}$-λ2$\overrightarrow{BF}$=$\overrightarrow{0}$,求證:$\frac{1}{2}$(λ12)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且橢圓經(jīng)過(guò)點(diǎn)(-2,0).
(1)求橢圓C的方程;
(2)過(guò)原點(diǎn)的直線與橢圓C交于A、B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸y軸分別交于M,N兩點(diǎn),設(shè)直線BD,AM斜率分別為k1,k2,證明存在常數(shù)λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知隨機(jī)變量X的分布列為:
 X 1 2
 P $\frac{1}{2}$ $\frac{1}{{2}^{2}}$ $\frac{1}{{2}^{n}}$
求隨機(jī)變量Y=sin$\frac{π}{2}$X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.等腰Rt△ABO內(nèi)接于拋物線y2=4x,O為拋物線的頂點(diǎn),若OA⊥OB,則△ABO的面積是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l:y=-x+1與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為($\frac{2}{3}$,$\frac{1}{3}$)
(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.曲線f(x)=xlnx在點(diǎn)P(1,0)處的切線l與坐標(biāo)軸圍成的三角形的外接圓方程是$(x-\frac{1}{2})^{2}+(y-\frac{1}{2})^{2}=\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,2)的距離相等的動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知A(-2,0),B(2,0),動(dòng)點(diǎn)M滿足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|=$\frac{4}{co{s}^{2}θ}$.
(1)求|$\overrightarrow{AM}$|+|$\overrightarrow{BM}$|的值,并寫(xiě)出M的軌跡曲線C的方程;
(2)動(dòng)直線l:y=kx+m與曲線C交于P、Q兩點(diǎn),且OP⊥OQ,是否存在圓x2+y2=r2使得l恰好是該圓的切線,若存在,求出r;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案