我校開設(shè)了“足球社”、“詩雨文學(xué)社”、“旭愛公益社”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:
社團(tuán)足球社詩雨文學(xué)社旭愛公益社
人數(shù)320240200
已知“足球社”社團(tuán)抽取的同學(xué)8人.
(1)求樣本容量n的值和從“詩雨文學(xué)社”社團(tuán)抽取的同學(xué)的人數(shù);
(2)若從“詩雨文學(xué)社”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)正、副社長(zhǎng)的職務(wù),已知“詩雨文學(xué)社”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為正、副社長(zhǎng)的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由題意可得
n
320+240+200
=
8
320
,解得n=19,由比例易得所求;
(Ⅱ)由(Ⅰ)知,從“詩雨文學(xué)社”社團(tuán)抽取的同學(xué)為6人,其中2位女生記為A,B,4位男生記為C,D,E,F(xiàn),列舉可得共15種,其中沒有女生的有6種,故所求概率1-
6
15
=
3
5
解答: 解:(Ⅰ)由題意可得=,解得n=19,
從“詩雨文學(xué)社”社團(tuán)抽取的同學(xué)240×
1
40
=6人;
(Ⅱ)由(Ⅰ)知,從“詩雨文學(xué)社”社團(tuán)抽取的同學(xué)為6人,
其中2位女生記為A,B,4位男生記為C,D,E,F(xiàn),
則從這6位同學(xué)中任選2人,不同的結(jié)果有
{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{B,C},
{B,D},{B,E},{B,F(xiàn)},{C,D},{C,E},{C,F(xiàn)},
{D,E},{D,F(xiàn)},{E,F(xiàn)},共15種,
從這6位同學(xué)中任選2人,沒有女生的有:{C,D},{C,E},
{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)},共6種
故至少有1名女同學(xué)被選中的概率1-
6
15
=
3
5
點(diǎn)評(píng):本題考查列舉法求基本事件數(shù)以及事件發(fā)生的概率,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞減的等比數(shù)列{an}滿足:a2+a3+a4=
26
27
,且a3+
4
27
是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求滿足不等式
Sn-m
Sn+1-m
3m
3m+1
成立的所有正整數(shù)m,n組成的有序?qū)崝?shù)對(duì)(m,n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過F的直線l交拋物線C于點(diǎn)A,B,當(dāng)直線l的傾斜角是45°時(shí),AB的中垂線交y軸于點(diǎn)Q(0,5).
(1)求p的值;
(2)以AB為直徑的圓交x軸于點(diǎn)M,N,記劣弧
MN
的長(zhǎng)度為S,當(dāng)直線l繞F旋轉(zhuǎn)時(shí),求
S
|AB|
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x與y負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù)
.
x
=4,
.
y
=4.5,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是( 。
A、
y
=0.4x+2.3
B、
y
=2x-2.4
C、
y
=-0.3x-3.3
D、
y
=-2x+12.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個(gè)零點(diǎn)分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,a2=3,前n項(xiàng)和為Sn,且
Sn+1-Sn
Sn-Sn-1
=
2an+1
an
,(n≥2,n∈N),設(shè)b1=1,bn+1=log2(an+1)+bn
(Ⅰ)判斷數(shù)量{an+1}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅱ)設(shè)Cn=
4
bn+1-1
n+1
anan+1
,證明
n
k=1
C
k
<1

(Ⅲ)對(duì)于(Ⅰ)中數(shù)列{an},若數(shù)列{ln}滿足ln=log2(an+1)(n∈N),在每?jī)蓚(gè)lk與lk+1之間都插入2k-1(k=1,2,3,…,k∈N)個(gè)2,使得數(shù)列{ln}變成了一個(gè)新的數(shù)列{tp},(p∈N)試問:是否存在正整數(shù)m,使得數(shù)列{tp}的前m項(xiàng)的和Tm=2011?如果存在,求出m的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷:
①若
a2
+
b2
=0,則
a
=
b
=0;
②已知
a
,
b
,
c
是三個(gè)非0向量,若
a
+
b
=0,則|
a
c
|=|
b
c
|;
a
、
b
共線?
a
b
=|
a
||
b
|;
④|
a
||
b
|<2
a
b
;
a
a
a
=|
a
|3;
a2
+
b2
≥2
a
b
;
⑦非零向量
a
,
b
滿足:
a
b
>0,則
a
b
夾角為銳角;
⑧若
a
,
b
的夾角為θ,則|
b
|cosθ表示向量
b
在向量
a
方向上的投影長(zhǎng),
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin3的取值所在的范圍是( 。
A、(
2
2
,1)
B、(0,
2
2
C、(-
2
2
,0)
D、(-1,-
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案