15.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.

分析 利用向量的數(shù)量積,化簡(jiǎn)求解,代入向量的夾角公式,求解即可.

解答 解:由$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-2,得$\overrightarrow{a}•\overrightarrow-{\overrightarrow{a}}^{2}$=-2,$\overrightarrow{a}•\overrightarrow$=2,所以$cos<\overrightarrow a•\overrightarrow b>=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}=\frac{1}{2}$,$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)任意實(shí)數(shù)a,b,c,d,命題:
①若a>b,c≠0,則ac>bc;
②若a>b,則ac2>bc2
③若ac2>bc2,則a>b.
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)點(diǎn)A在-150°角的終邊上,|$\overrightarrow{OA}$|=2$\sqrt{2}$(O是坐標(biāo)原點(diǎn)),則向量$\overrightarrow{OA}$的坐標(biāo)為( 。
A.($\sqrt{6}$,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{6}$)C.(-$\sqrt{2}$,-$\sqrt{6}$)D.(-$\sqrt{6}$,-$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知冪函數(shù)y=(m-1)2•x${\;}^{{m^2}-4m+2}}$在(0,+∞)上單調(diào)遞增,則m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”.若輸入的m,n分別為385,105,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余數(shù),例:11MOD7=4),則輸出的m等于( 。
A.0B.15C.35D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.閱讀如圖所示程序框圖,若輸出的n=5,則滿足條件的整數(shù)p共有( 。﹤(gè).
A.8B.16C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知雙曲線C1:$\frac{{y}^{2}}{a}$-x2=1到直線l:y+$\sqrt{2}$=0的距離等于圓C2:x2+y2-8x-10y+16=0到直線l:y+$\sqrt{2}$=0,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=BB1=$\sqrt{2}$,在四邊形ABC1D1內(nèi)隨機(jī)取一點(diǎn)M,則滿足∠AMB≥135°的概率為( 。
A.$\frac{π}{8}$B.$\frac{π-2}{8}$C.$\frac{2π-3\sqrt{3}}{12}$D.$\frac{2\sqrt{2}-2}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F作x軸的垂線交兩漸近線于點(diǎn)A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+u$\overrightarrow{OB}$(λ,μ∈R),λ2+u2=$\frac{5}{8}$,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案