精英家教網 > 高中數學 > 題目詳情

【題目】某教師調查了名高三學生購買的數學課外輔導書的數量,將統(tǒng)計數據制成如下表格:

男生

女生

總計

購買數學課外輔導書超過

購買數學課外輔導書不超過

總計

(Ⅰ)根據表格中的數據,是否有的把握認為購買數學課外輔導書的數量與性別相關;

(Ⅱ)從購買數學課外輔導書不超過本的學生中,按照性別分層抽樣抽取人,再從這人中隨機抽取人詢問購買原因,求恰有名男生被抽到的概率.

附: , .

【答案】(Ⅰ)見解析(Ⅱ)

【解析】試題分析:I根據表格數據利用公式: 求得 的值,與鄰界值比較,即可得到結論;II利用列舉法,確定基本事件的個數以及滿足條件的事件個數,利用古典概型概率公式可求出恰有名男生被抽到的概率.

試題解析:(Ⅰ) 的觀測值,

故有的把握認為購買數學課外輔導書的數量與性別有關.

(Ⅱ)依題意,被抽到的女生人數為,記為 ;男生人數為,記為, , , ,則隨機抽取人,所有的基本事件為, , , , , , , , , , , , , ,共個.

滿足條件的有 , , , , , , , ,共個,

故所求概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點的縱坐標不變,橫坐標縮短為原來的一半,再將圖象向右平移 個單位長度得到函數y=sinx的圖象.
(1)直接寫出f(x)的表達式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方形ABCD一條邊AB所在方程為x+3y﹣5=0,另一邊CD所在直線方程為x+3y+7=0,
(Ⅰ)求正方形中心G所在的直線方程;
(Ⅱ)設正方形中心G(x0 , y0),當正方形僅有兩個頂點在第一象限時,求x0的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在△ABC中,B= ,AC=2 ,cosC=

(1)求sin∠BAC的值及BC的長度;
(2)設BC的中點為D,求中線AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,直三棱柱中, , 為棱的中點.

(Ⅰ)探究直線與平面的位置關系,并說明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)是否存在正整數,使得上恒成立?若存在,求出的最大值并給出推導過程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足a2=0,a6+a8=﹣10.
(1)求數列{an}的通項公式;
(2)求數列{ }的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用0、1、2、3、4這五個數字,可以組成多少個滿足下列條件的沒有重復數字的五位數?
(1)奇數;
(2)比21034大的偶數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以連勝的不敗成績贏得第屆亞錦賽冠軍,同時拿到亞洲唯一張直通里約奧運會的入場券.賽后,中國男籃主力易建聯榮膺本屆亞錦賽(最有價值球員),下表是易建聯在這場比賽中投籃的統(tǒng)計數據.

比分

易建聯技術統(tǒng)計

投籃命中

罰球命中

全場得分

真實得分率

中國新加坡

中國韓國

中國約旦

中國哈薩克斯坦

中國黎巴嫩

中國卡塔爾

中國印度

中國伊朗

中國菲律賓

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述場比賽中隨機選擇一場,求易建聯在該場比賽中超過的概率;

(2)我們把比分分差不超過分的比賽稱為“膠著比賽”.為了考驗求易建聯在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯在這兩場比賽中至少有一場超過的概率;

(3)用來表示易建聯某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據散點圖判斷之間是否具有線性相關關系?結合實際簡單說明理由.

查看答案和解析>>

同步練習冊答案