【題目】已知(1+3x)n的展開(kāi)式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于121,求:
(1) 展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2) 展開(kāi)式中系數(shù)最大的項(xiàng).(結(jié)果可以以組合數(shù)形式表示)
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)先根據(jù)末三項(xiàng)的二項(xiàng)式系數(shù)的和等于121,求n,再根據(jù)二項(xiàng)式系數(shù)性質(zhì)求最大項(xiàng),(2)根據(jù)二項(xiàng)式展開(kāi)式通項(xiàng)公式得項(xiàng)系數(shù),再根據(jù)相鄰項(xiàng)關(guān)系列不等式組,解得系數(shù)最大的項(xiàng)的項(xiàng)數(shù),最后根據(jù)二項(xiàng)式展開(kāi)式通項(xiàng)公式得項(xiàng).
(1) 由已知得=120,則n(n-1)+(n-1)+1=120,即n2+n-240=0,解得n=15,所以,展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是T8=(3x)7和T9=(3x)8.
(2)Tr+1=(3x)r,設(shè)≤1,則≤1,即≤0,解得r≤12,同理,由≥1解得r≥11,所以展開(kāi)式中系數(shù)最大的項(xiàng)對(duì)應(yīng)的r=11、12,即展開(kāi)式中系數(shù)最大的項(xiàng)是T12=(3x)11和T13=(3x)12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時(shí)間的頻率代替某人1次駕車單程所需時(shí)間的概率.
(1)求的分布列與;
(2)某天有3位教師獨(dú)自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時(shí)間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開(kāi)大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: =1(a>b>0)的離心率為e= ,且過(guò)點(diǎn)(1, ).拋物線C2:x2=﹣2py(p>0)的焦點(diǎn)坐標(biāo)為(0,﹣ ).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點(diǎn)M是直線l:2x﹣4y+3=0上的動(dòng)點(diǎn),過(guò)點(diǎn)M作拋物線C2的兩條切線,切點(diǎn)分別為A,B,直線AB交橢圓C1于P,Q兩點(diǎn).
(i)求證直線AB過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)當(dāng)△OPQ的面積取最大值時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長(zhǎng)度單位為長(zhǎng)度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= (a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時(shí)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>0,b>0( )
A.若lna+2a=lnb+3b,則a>b
B.2a+2a=2b+3b,則a<b
C.若lna﹣2a=lnb﹣3b,則a>b
D.2a﹣2a=2b﹣3b,則a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式|2x﹣1|<1的解集為M,a∈M,b∈M
(1)試比較ab+1與a+b的大小
(2)設(shè)max表示數(shù)集A的最大數(shù),h=max{ , , },求證h≥2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且 =﹣ .
(Ⅰ)求角B的大。
(Ⅱ)若b= ,a+c=4,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com