【題目】在工業(yè)生產(chǎn)中,對一正三角形薄鋼板(厚度不計)進(jìn)行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長為3(單位:米)的正三角形鋼板(如圖),沿平行于邊的直線將剪去,得到所需的梯形鋼材,記這個梯形鋼板的周長為 (單位:米),面積為(單位:平方米).
(1)求梯形的面積關(guān)于它的周長的函數(shù)關(guān)系式;
(2)若在生產(chǎn)中,梯形的面積與周長之比(即)達(dá)到最大值時,零件才能符合使用要求,試確定這個梯形的周長為多時,該零件才可以在生產(chǎn)中使用?
【答案】(1);(2)當(dāng)米時,該零件才可以在生產(chǎn)中使用。
【解析】
(1)根據(jù)幾何關(guān)系得到是正三角形,,,則 ,;(2)由(1)得 ,令 ,對此函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性進(jìn)而得到最值.
(1)是正三角形,
是正三角形,,,
則 ,
,
化簡得.
故梯形的面積關(guān)于它的周長的函數(shù)關(guān)系式為
.
(2)由(1)得 ,
令 ,
,令,得或(舍去),
列表如下:
0 | |||
單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
當(dāng)時,函數(shù)有最大值,為.
當(dāng)米時,該零件才可以在生產(chǎn)中使用.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)均為大于1的整數(shù).證明:存在個不被整除的整數(shù),若將它們?nèi)我夥殖蓛山M,則總有一組有若干個數(shù)的和被整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(且)是R上的奇函數(shù),且.
(1)求的解析式;
(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;
(3)設(shè),記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,記為與原點距離等于的全體直線所成的集合.問:是否存在常數(shù),使得對任意的直線,均存在、,、分別過 與橢圓的交點、,且有?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.
(1)求拋物線的方程;
(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線與相交于點,求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遞增的等差數(shù)列的前項和為.若與是方程的兩個實數(shù)根.
(1)求數(shù)列的通項公式;
(2)當(dāng)為多少時,取最小值,并求其最小值;
(3)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com