(本小題滿分14分) 若橢圓過點,離心率為,⊙O的圓心在原點,直徑為橢圓的短軸,⊙M的方程為,過⊙M上任一點P作⊙O的切線PA、PB,切點為A、B.
(1) 求橢圓的方程;
(2)若直線PA與⊙M的另一交點為Q,當弦PQ最大時,求直線PA的方程。
(1);(2) 。
本試題主要是考查了橢圓的方程的求解,以及直線與圓的位置關系的運用以及直線方程求解問題綜合運用。
(1)由題意中離心率和過點(-3,2)得到關系參數(shù)a,b,c的關系式,進而求解得到橢圓的方程。
(2)由題可知當直線PA過圓M的圓心(8,6)時,弦PQ最大,
因為直線PA的斜率一定存在,設直線PA的方程為:y-6=k(x-8),然后又因為PA與圓O相切,所以圓心(0,0)到直線PA的距離可知,從而得到k的值,得到直線方程。
解:(1)由題意得: ,     ………4分
所以橢圓的方程為     …………………………………………6分
(2)由題可知當直線PA過圓M的圓心(8,6)時,弦PQ最大,      ……8分
因為直線PA的斜率一定存在,設直線PA的方程為:y-6=k(x-8)     ……10分
又因為PA與圓O相切,所以圓心(0,0)到直線PA的距離為 ……11分
 可得             ……………………12分
所以直線PA的方程為:  …………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

直線,橢圓,直線與橢圓的公共點的個數(shù)為(      )
A. 1個B.1個或者2個C. 2個D. 0個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的兩個焦點為(),(1,0),橢圓的長半軸長為2,則橢圓方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,點AB分別是橢圓的長軸的左右端點,點F為橢圓的右焦點,直線PF的方程為:.

(1)求直線AP的方程;
(2)設點M是橢圓長軸AB上一點,點M到直線AP的距離等于,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一平面直角坐標系中,經(jīng)過伸縮變換后,曲線C變?yōu)榍
則曲線C的方程為(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的兩焦點分別為,且橢圓上的點到的最小距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作直線交橢圓兩點,設線段的中垂線交軸于,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓>0,>0)外 ,則過作橢圓的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是,那么類比雙曲線則有如下命題: 若在雙曲線>0,>0)外 ,則過作雙曲線的兩條切線的切點為P1、P2,切點弦P1P2的直線方程是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過點作拋物線 的切線,切點A在第二象限.

(1)求切點A的縱坐標;
(2)若離心率為的橢圓恰好經(jīng)過切點A,設切線交橢圓的另一點為B,記切線,OA,OB的斜率分別為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案